生成对抗网络(GAN)的原理和实践
作者:禅与计算机程序设计艺术
1. 背景介绍
生成对抗网络(Generative Adversarial Networks, GAN)是近年来机器学习和深度学习领域备受关注的一种重要模型和算法。GAN由Ian Goodfellow等人在2014年提出,是一种基于对抗训练的生成模型,在图像生成、文本生成、语音合成等诸多领域取得了令人瞩目的成果。GAN模型通过两个相互竞争的神经网络——生成器(Generator)和判别器(Discriminator)的对抗训练,最终学习到生成器能够生成接近真实数据分布的样本。
2. 核心概念与联系
GAN的核心思想是利用两个神经网络之间的对抗训练,使得生成器(G)逐步学习到从随机噪声z生成接近真实数据分布的样本x,而判别器(D)则尽可能准确地区分生成器生成的样本和真实样本。这种对抗训练过程可以形式化为一个minimax博弈问题:
min G m