1. 背景介绍
机器学习模型在构建完成后,并非一成不变。随着时间的推移和数据的变化,模型的性能可能会下降,无法适应新的情况。为了保持模型的有效性和竞争力,持续学习成为一项至关重要的任务。
1.1 模型退化问题
模型退化的原因主要包括:
- 数据分布变化: 训练数据和实际应用数据之间可能存在差异,导致模型在新的数据上表现不佳。
- 概念漂移: 数据的内在模式可能会随时间发生变化,例如用户偏好、流行趋势等。
- 对抗攻击: 恶意攻击者可能会试图欺骗模型,使其做出错误的预测。
1.2 持续学习的意义
持续学习可以帮助我们解决模型退化问题,并带来以下好处:
- 提高模型性能: 通过不断学习新的数据,模型可以更好地适应变化的环境,提高预测准确率。
- 降低维护成本: 无需频繁重新训练模型,节省时间和资源。
- 增强模型鲁棒性: 持续学习可以帮助模型抵抗对抗攻击,提高模型的安全性。