1. 背景介绍
1.1 交通信号控制的挑战
现代城市交通系统的复杂性日益增加,交通拥堵问题成为了城市发展的一大瓶颈。传统的交通信号控制方法,例如固定时间控制和感应控制,难以应对复杂的交通状况和动态变化的交通需求。为了解决这个问题,智能交通系统 (ITS) 应运而生,旨在利用先进的技术手段提升交通效率,缓解交通拥堵。
1.2 多智能体强化学习的优势
多智能体强化学习 (MARL) 是一种新兴的机器学习方法,它能够模拟多个智能体在复杂环境中相互交互、学习和决策的过程。在交通信号控制领域,MARL 可以被用来协调多个交通信号灯的运作,从而优化交通流量,减少车辆延误和排放。
1.3 本文的贡献
本文将深入探讨多智能体强化学习在交通信号控制中的应用。我们将介绍 MARL 的基本概念、算法原理和实际操作步骤,并通过项目实践展示如何使用 MARL 构建智能交通信号控制系统。此外,我们还将讨论 MARL 在交通信号控制领域的实际应用场景、工具和资源推荐,以及未来发展趋势与挑战。
2. 核心概念与联系
2.1 强化学习
强化学习 (RL) 是一种机器学习方法,它使智能体能够通过与环境的交互学习最佳行为策略。在 RL 中,智能体通过观察