1. 背景介绍
1.1 时间序列预测的挑战
时间序列预测是数据科学领域中一个经典且具有挑战性的问题。其目标是根据历史数据预测未来的趋势,在金融、气象、交通等领域有着广泛的应用。然而,时间序列数据往往具有复杂的模式和非线性关系,使得准确预测变得困难。
传统的统计方法,如ARIMA模型,主要依赖于数据的统计特性进行预测,但忽略了数据背后的因果关系。近年来,随着机器学习的兴起,深度学习模型如RNN、LSTM在时间序列预测任务中取得了显著的成果。然而,这些模型大多是“黑盒”模型,缺乏可解释性,难以揭示数据背后的因果机制。
1.2 因果推断的兴起
因果推断致力于识别变量之间的因果关系,而不是仅仅停留在相关性分析。其核心思想是通过干预或实验来模拟因果关系,从而更准确地预测未来。近年来,因果推断在经济学、社会学、医学等领域取得了巨大的成功,并逐渐应用于机器学习和人工智能领域。
1.3 因果推断与时间序列预测的结合
将因果推断引入时间序列预测,可以帮助我们更好地理解数据背后的因果机制,进而提高预测的准确性和可解释性。例如,我们可以利用因果推断识别影响时间序列的关键因素,并构建更精确的预测模型。