大规模语言模型从理论到实践 vLLM 推理框架实践

大规模语言模型从理论到实践:vLLM 推理框架实践

关键词: 大规模语言模型,推理,vLLM,性能优化,分布式推理

近年来,大规模语言模型(LLM)在自然语言处理领域取得了显著的成果,展现出强大的文本生成、理解和推理能力。然而,LLM 的规模和计算需求也带来了巨大的挑战,尤其是在实际应用中的推理效率方面。为了解决这个问题,各种 LLM 推理框架应运而生,vLLM 就是其中的佼佼者。本文将深入探讨 LLM 推理的挑战,介绍 vLLM 框架的架构和原理,并结合代码实例详细讲解如何利用 vLLM 进行高效的 LLM 推理。

文章目录

1. 背景介绍

1.1 大规模语言模型的兴起

近年来,随着深度学习技术的快速发展,大规模语言模型(LLM)逐渐成为自然语言处理领域的研究热点。从早期的 BERT、GPT-2,到如今的 GPT-3、PaLM 等,LLM 的规模和能力不断提升,在各种 NLP 任务上取得了突破性进展。

1.2 LLM 推理的挑战

尽管 LLM 潜力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值