大规模语言模型从理论到实践:vLLM 推理框架实践
关键词: 大规模语言模型,推理,vLLM,性能优化,分布式推理
近年来,大规模语言模型(LLM)在自然语言处理领域取得了显著的成果,展现出强大的文本生成、理解和推理能力。然而,LLM 的规模和计算需求也带来了巨大的挑战,尤其是在实际应用中的推理效率方面。为了解决这个问题,各种 LLM 推理框架应运而生,vLLM 就是其中的佼佼者。本文将深入探讨 LLM 推理的挑战,介绍 vLLM 框架的架构和原理,并结合代码实例详细讲解如何利用 vLLM 进行高效的 LLM 推理。
文章目录
-
- 大规模语言模型从理论到实践:vLLM 推理框架实践
- 1. 背景介绍
- 2. 核心概念与联系
- 3. 核心算法原理 & 具体操作步骤
- 4. 数学模型和公式 & 详细讲解 & 举例说明
- 5. 项目实践:代码实例和详细解释说明
- 6. 实际应用场景
- 7. 工具和资源推荐
- 8. 总结:未来发展趋势与挑战
- 9. 附录:常见问题与解答
- 作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
- 大规模语言模型从理论到实践:vLLM推理框架实践
- 1. 背景介绍
- 2. 核心概念与联系
- 3. 核心算法原理与具体操作步骤
- 4. 数学模型和公式
- 5. 项目实践:代码实例和详细解释说明
- 6. 实际应用场景
- 7. 工具和资源推荐
- 8. 总结:未来发展趋势与挑战
- 9. 附录:常见问题与解答
1. 背景介绍
1.1 大规模语言模型的兴起
近年来,随着深度学习技术的快速发展,大规模语言模型(LLM)逐渐成为自然语言处理领域的研究热点。从早期的 BERT、GPT-2,到如今的 GPT-3、PaLM 等,LLM 的规模和能力不断提升,在各种 NLP 任务上取得了突破性进展。
1.2 LLM 推理的挑战
尽管 LLM 潜力