1. 背景介绍
1.1 多模态学习的兴起
近年来,随着深度学习技术的飞速发展,人工智能在各个领域都取得了突破性进展。其中,多模态学习作为人工智能领域的一个重要分支,受到了越来越多的关注。多模态学习旨在通过整合来自不同模态的信息(如文本、图像、语音等),实现对现实世界更全面、更深入的理解。
1.2 大模型时代的到来
随着计算能力的提升和数据量的爆炸式增长,大模型成为了人工智能发展的新趋势。大模型通常拥有数十亿甚至数万亿的参数,能够在海量数据中学习到丰富的知识和强大的泛化能力。在自然语言处理领域,以 GPT-3 为代表的大规模语言模型展现出了惊人的能力,能够生成高质量的文本、进行复杂的推理和理解。
1.3 多模态大模型的应用前景
将多模态学习与大模型相结合,催生了多模态大模型这一新兴领域。多模态大模型不仅能够处理单一模态的数据,还能够融合来自不同模态的信息,从而实现更强大的感知、理解和生成能力。例如,多模态大模型可以用于:
- 图像描述生成:根据图像内容生成相应的文本描述。
- 跨模态检索:根据文本查询图像,或根据图像查询文本。
- 视频理解与