1. 背景介绍
1.1 问题的由来
随着人工智能技术的不断发展,自然语言处理领域取得了突破性的进展,尤其是大模型技术的兴起,为问答机器人带来了新的机遇和挑战。传统的问答机器人通常基于规则或检索模型,难以处理复杂、开放性的问题,而大模型问答机器人则能够通过深度学习技术,理解和生成自然语言,提供更智能、更人性化的交互体验。
1.2 研究现状
近年来,大模型问答机器人的研究取得了显著进展,主要体现在以下几个方面:
- 模型规模不断扩大: 从最初的 BERT、GPT-3 等模型,到如今的 PaLM、BLOOM 等超大规模模型,模型参数量不断增加,能够处理更复杂的任务,并展现出更强大的能力。
- 多模态融合: 大模型开始融合图像、音频、视频等多模态信息,能够更好地理解和生成复杂信息,例如,可以根据图片内容回答问题,或根据视频内容生成摘要。
- 对话能力提升: 大模型在对话生成方面取得了突破,能够进行更自然、更流畅的对话,并根据上下文理解用户的意图,提供更精准的答案。
- 应用场景扩展: 大模型问答机器人开始应用于各种领域,例如&#