知识蒸馏,多智能体系统,强化学习,模型压缩,迁移学习
1. 背景介绍
随着人工智能技术的飞速发展,多智能体系统(Multi-Agent Systems,MAS)在各个领域展现出巨大的应用潜力。MAS由多个智能体组成,每个智能体都具有自主决策能力,并通过相互交互和协作来完成共同目标。然而,训练高效、鲁棒且可扩展的MAS仍然是一个巨大的挑战。
知识蒸馏(Knowledge Distillation)是一种模型压缩技术,通过将一个大型模型(教师模型)的知识迁移到一个小型模型(学生模型)中,从而实现模型压缩和性能提升。近年来,知识蒸馏在单智能体系统中取得了显著的成果,但将其应用于MAS领域的研究相对较少。
2. 核心概念与联系
2.1 知识蒸馏原理
知识蒸馏的核心思想是将教师模型的知识,包括特征表示和决策策略,通过一种特殊的训练方式传递到学生模型中。
2.2 多智能体系统特点
- 分布式决策: 每个智能体都拥有自己的感知、决策和行动能力。
- 交互性: 智能体之间