第1章:问题背景与核心概念
1.1 问题背景
在现代人工智能(AI)的发展历程中,AI Agent(智能代理)作为一种具有自主决策和执行能力的系统,逐渐成为研究和应用的热点。AI Agent不仅能够模拟人类的思维过程,还能在特定环境中自主完成任务。然而,AI Agent在面临复杂、多样化的任务时,如何有效地获取和利用知识成为了一个关键问题。
跨域知识迁移(Cross-Domain Knowledge Transfer)是解决AI Agent知识获取难题的一种重要方法。它通过在不同领域之间转移知识,帮助AI Agent在新的、未接触过的领域中迅速适应和表现。然而,传统的跨域知识迁移方法往往面临以下挑战:
- 知识表示不统一:不同领域之间的知识表示方式可能存在较大差异,这使得直接迁移变得困难。
- 领域依赖性:某些知识在特定领域内非常有用,但在其他领域可能并不适用。
- 数据稀缺:在许多情况下,目标领域的训练数据可能非常有限,这限制了传统迁移学习方法的适用性。
为了克服这些挑战,近年来,大型语言模型(LLM,Large