事件驱动架构下的AI模型实时更新策略

事件驱动架构下的AI模型实时更新策略

关键词:事件驱动架构、AI模型更新、实时机器学习、消息队列、模型部署、数据流、微服务

摘要:本文深入探讨了在事件驱动架构(EDA)中实现AI模型实时更新的策略和方法。我们将从基础概念出发,逐步分析事件驱动架构如何与AI模型更新相结合,介绍多种实现方案,并通过实际代码示例展示具体实现细节。文章还将讨论该领域的挑战、最佳实践和未来发展趋势。

背景介绍

目的和范围

本文旨在为技术人员提供在事件驱动架构下实现AI模型实时更新的全面指南。我们将覆盖从基础概念到高级实现的所有关键环节,包括架构设计、数据流处理、模型部署策略等。

预期读者

本文适合以下读者:

  • 机器学习工程师
  • 数据工程师
  • 软件架构师
  • 全栈开发人员
  • 对实时AI系统感兴趣的技术管理者

文档结构概述

文章首先介绍核心概念,然后深入技术实现细节,包括代码示例和架构图。最后讨论实际应用场景、工具推荐和未来趋势。

术语表

核心术语定义
  • 事件驱动架构(EDA): 一种软件架构模式,系统的行为由事件的生产、检测和消费决定
  • 模型漂移: 当生产环境中的数据分布与训练数据分布发生偏差时,模型性能下降的现象
  • 在线学习: 模型在新数据到达时持续更新的学习方式
  • 特征存储: 用于管理和服务机器学习特征的集中式存储系统
相关概念解释
  • 微批处理: 介于批处理和流处理之间的处理方式,处理小批量数据
  • 模型服务化: 将训练好的模型部署为可通过API访问的服务
  • A/B测试: 同时运行两个不同版本的模型以比较其性能的技术
缩略词列表
  • EDA: Event-Driven Architecture
  • MLOps: Machine Learning Operations
  • API: Application Programming Interface
  • SDK: Software Development Kit
  • REST: Representational State Transfer

核心概念与联系

故事引入

想象一下,你经营着一家在线书店,使用AI模型为用户推荐书籍。传统方式下,你的推荐模型可能每周更新一次。但有一天,一本新书突然爆红,你的模型却要等到下周才能"知道"这本书的存在。这期间,你会错过多少销售机会?

这就是为什么我们需要实时模型更新——让AI系统像活水一样流动,而不是像死水一样停滞。而事件驱动架构,就像为这个流动系统铺设的高速管道网络。

核心概念解释

核心概念一:事件驱动架构(EDA)

可以把EDA想象成一个邮局系统。不同部门(服务)不直接互相打电话,而是通过发送和接收信件(事件)来沟通。当有新书到货(事件)时,采购部门会发一封信,推荐系统收到信后就能立即更新自己的知识。

核心概念二:模型实时更新

这就像是一个学生在课堂上不断做笔记。传统方式是每周末复习一次笔记(批量更新),而实时更新则是每听到老师讲一个新知识点就立即记录下来(持续更新),这样永远不会落后。

核心概念三:数据流处理

想象一条河流,数据就像水流一样不断流过。我们需要在河上建造各种"水处理站"(处理节点),实时过滤、转换和分析这些流动的数据。

核心概念之间的关系

EDA和模型更新的关系

EDA提供了模型实时更新的基础设施。就像邮局系统让信息能够快速传递一样,EDA让模型更新的触发信号和数据能够及时到达更新系统。

模型更新和数据流的关系

数据流是模型更新的"食物"。就像人体需要持续摄入营养一样,模型需要持续的数据流来保持"健康"和"最新状态"。

EDA和数据流的关系

EDA是数据流动的"管道系统"。它定义了数据如何流动、被谁处理、以及处理结果的去向,就像城市的下水道系统规划了水的流向。

核心概念原理和架构的文本示意图

[事件生产者] --> [消息队列] --> [事件消费者]
    |                      |
    |---> [流处理器] ---> [特征存储]
    |                      |
    |---> [模型训练器] ---> [模型仓库]
    |                      |
    |---> [模型部署器] ---> [模型服务]

Mermaid 流程图

产生事件
用户反馈
数据源
消息队列
流处理器
特征存储
模型训练器
模型仓库
模型部署器
模型服务
应用程序

核心算法原理 & 具体操作步骤

实现事件驱动架构下的AI模型实时更新,我们需要考虑以下几个关键组件:

  1. 事件生产与消费机制
  2. 流式特征处理
  3. 增量模型训练
  4. 无缝模型切换

让我们用Python代码示例来说明这些概念:

1. 事件生产与消费

# 事件生产者示例
import json
from kafka import KafkaProducer

producer = KafkaProducer(bootstrap_servers='localhost:9092',
                         value_serializer=lambda v: json.dumps(v).encode('utf-8'))

def produce_event(event_type, data):
    event = {
        'type': event_type,
        'timestamp': int(time.time()),
        'data': data
    }
    producer.send('ai_events', event)

# 事件消费者示例
from kafka import KafkaConsumer
from json import loads

consumer = KafkaConsumer('ai_events',
                         bootstrap_servers=['localhost:9092'],
                         auto_offset_reset='earliest',
                         enable_auto_commit=True,
                         value_deserializer=lambda x: loads(x.decode('utf-8')))

for message in consumer:
    event = message.value
    handle_event(event)  # 处理事件的函数

2. 流式特征处理

from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment

env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)

# 定义Kafka源
t_env.execute_sql("""
CREATE TABLE user_events (
    user_id STRING,
    event_type STRING,
    timestamp BIGINT,
    features MAP<STRING, FLOAT>,
    WATERMARK FOR timestamp AS timestamp - INTERVAL '5' SECOND
) WITH (
    'connector' = 'kafka',
    'topic' = 'user_events',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json'
)
""")

# 定义特征处理逻辑
t_env.execute_sql("""
CREATE TABLE processed_features (
    user_id STRING,
    window_start TIMESTAMP(3),
    window_end TIMESTAMP(3),
    avg_feature1 FLOAT,
    sum_feature2 FLOAT
) WITH (
    'connector' = 'kafka',
    'topic' = 'processed_features',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json'
)
""")

# 执行特征聚合
t_env.execute_sql("""
INSERT INTO processed_features
SELECT 
    user_id,
    TUMBLE_START(timestamp, INTERVAL '1' MINUTE) AS window_start,
    TUMBLE_END(timestamp, INTERVAL '1' MINUTE) AS window_end,
    AVG(features['feature1']) AS avg_feature1,
    SUM(features['feature2']) AS sum_feature2
FROM user_events
GROUP BY 
    user_id,
    TUMBLE(timestamp, INTERVAL '1' MINUTE)
""")

3. 增量模型训练

from river import linear_model
from river import preprocessing
from river import optim
from river import metrics
import pandas as pd
from kafka import KafkaConsumer

# 初始化模型
model = (
    preprocessing.StandardScaler() |
    linear_model.LogisticRegression(
        optimizer=optim.SGD(0.01),
        loss=optim.losses.Log()
    )
)

metric = metrics.Accuracy()

# 从Kafka消费特征数据
consumer = KafkaConsumer('processed_features',
                         bootstrap_servers=['localhost:9092'],
                         value_deserializer=lambda x: loads(x.decode('utf-8')))

for message in consumer:
    data = message.value
    x = {k: v for k, v in data.items() if k not in ['user_id', 'label']}
    y = data['label']
    
    # 增量学习
    y_pred = model.predict_one(x)
    model.learn_one(x, y)
    
    # 更新评估指标
    metric.update(y, y_pred)
    
    # 定期保存模型
    if message.offset % 1000 == 0:
        save_model(model, f'model_{message.offset}.pkl')

4. 无缝模型切换

import threading
import time
from concurrent.futures import ThreadPoolExecutor

class ModelSwitcher:
    def __init__(self):
        self.current_model = None
        self.new_model = None
        self.lock = threading.Lock()
        self.executor = ThreadPoolExecutor(max_workers=2)
    
    def load_new_model(self, model_path):
        def _load():
            new_model = load_model(model_path)
            with self.lock:
                self.new_model = new_model
        self.executor.submit(_load)
    
    def switch_model(self):
        with self.lock:
            if self.new_model is not None:
                self.current_model = self.new_model
                self.new_model = None
                return True
        return False
    
    def predict(self, x):
        with self.lock:
            if self.current_model is None:
                raise ValueError("Model not loaded")
            return self.current_model.predict(x)

# 使用示例
switcher = ModelSwitcher()
switcher.load_new_model('initial_model.pkl')

# 在另一个线程中定期检查并更新模型
def background_updater():
    while True:
        if switcher.switch_model():
            print("Model switched successfully")
        time.sleep(60)

threading.Thread(target=background_updater, daemon=True).start()

数学模型和公式

在实时模型更新中,有几个关键的数学模型:

1. 在线学习的目标函数

对于在线学习算法,目标函数通常采用以下形式:

min ⁡ w ∑ i = 1 t ℓ ( f w ( x i ) , y i ) + λ R ( w ) \min_w \sum_{i=1}^t \ell(f_w(x_i), y_i) + \lambda R(w) wmini=1t(fw(xi),yi)+λR(w)

其中:

  • w w w 是模型参数
  • ℓ \ell 是损失函数
  • R ( w ) R(w) R(w) 是正则化项
  • λ \lambda λ 是正则化系数
  • ( x i , y i ) (x_i, y_i) (xi,yi) 是第i个样本

2. 随机梯度下降(SGD)更新规则

对于在线学习,参数更新通常采用SGD方式:

w t + 1 = w t − η t ∇ w ℓ ( f w t ( x t ) , y t ) w_{t+1} = w_t - \eta_t \nabla_w \ell(f_{w_t}(x_t), y_t) wt+1=wtηtw(fwt(xt),yt)

其中 η t \eta_t ηt是学习率,通常随时间衰减:

η t = η 0 1 + α t \eta_t = \frac{\eta_0}{1 + \alpha t} ηt=1+αtη0

3. 指数加权移动平均(用于特征标准化)

在流式特征处理中,我们常用指数加权移动平均来维护特征的均值和方差:

μ t = β μ t − 1 + ( 1 − β ) x t \mu_t = \beta \mu_{t-1} + (1-\beta)x_t μt=βμt1+(1β)xt

σ t 2 = β σ t − 1 2 + ( 1 − β ) ( x t − μ t ) 2 \sigma_t^2 = \beta \sigma_{t-1}^2 + (1-\beta)(x_t - \mu_t)^2 σt2=βσt12+(1β)(xtμt)2

其中 β \beta β是衰减因子,通常取0.9-0.99。

项目实战:代码实际案例和详细解释说明

开发环境搭建

  1. 基础设施准备:

    • Kafka集群(用于事件传递)
    • Flink集群(用于流处理)
    • Redis或特征存储(用于特征服务)
    • 模型服务框架(如TensorFlow Serving, Seldon Core等)
  2. Python环境:

    conda create -n realtime_ai python=3.8
    conda activate realtime_ai
    pip install kafka-python pyflink river scikit-learn pandas
    

源代码详细实现和代码解读

让我们实现一个完整的实时推荐系统更新流程:

# realtime_recommender.py
import json
import time
import threading
from collections import defaultdict
from kafka import KafkaProducer, KafkaConsumer
from sklearn.linear_model import SGDClassifier
import pickle
import numpy as np

class RealTimeRecommender:
    def __init__(self):
        # 初始化Kafka生产者
        self.producer = KafkaProducer(
            bootstrap_servers='localhost:9092',
            value_serializer=lambda v: json.dumps(v).encode('utf-8')
        )
        
        # 初始化模型
        self.model = SGDClassifier(loss='log_loss', warm_start=True)
        self.is_model_trained = False
        self.model_lock = threading.Lock()
        
        # 初始化特征缓存
        self.user_features = defaultdict(dict)
        self.item_features = defaultdict(dict)
        
        # 启动消费者线程
        self.consumer_thread = threading.Thread(target=self._consume_events)
        self.consumer_thread.daemon = True
        self.consumer_thread.start()
        
        # 启动模型训练线程
        self.trainer_thread = threading.Thread(target=self._periodic_training)
        self.trainer_thread.daemon = True
        self.trainer_thread.start()
    
    def _consume_events(self):
        consumer = KafkaConsumer(
            'user_events',
            bootstrap_servers=['localhost:9092'],
            auto_offset_reset='earliest',
            value_deserializer=lambda x: json.loads(x.decode('utf-8'))
        )
        
        for message in consumer:
            event = message.value
            self._process_event(event)
    
    def _process_event(self, event):
        event_type = event['type']
        
        if event_type == 'user_action':
            # 更新用户特征
            user_id = event['data']['user_id']
            item_id = event['data']['item_id']
            action_type = event['data']['action_type']
            
            # 简单的特征更新逻辑
            if action_type == 'view':
                self.user_features[user_id].setdefault('view_count', 0)
                self.user_features[user_id]['view_count'] += 1
            elif action_type == 'purchase':
                self.user_features[user_id].setdefault('purchase_count', 0)
                self.user_features[user_id]['purchase_count'] += 1
            
            # 记录用户-物品交互
            self.user_features[user_id].setdefault('recent_items', [])
            self.user_features[user_id]['recent_items'].append(item_id)
            if len(self.user_features[user_id]['recent_items']) > 5:
                self.user_features[user_id]['recent_items'].pop(0)
            
            # 发送特征更新事件
            self._produce_feature_update(user_id, 'user')
        
        elif event_type == 'new_item':
            # 处理新物品事件
            item_id = event['data']['item_id']
            item_features = event['data']['features']
            self.item_features[item_id] = item_features
            
            # 发送特征更新事件
            self._produce_feature_update(item_id, 'item')
    
    def _produce_feature_update(self, entity_id, entity_type):
        if entity_type == 'user':
            features = self.user_features[entity_id]
        else:
            features = self.item_features[entity_id]
        
        event = {
            'type': 'feature_update',
            'entity_type': entity_type,
            'entity_id': entity_id,
            'features': features,
            'timestamp': int(time.time())
        }
        
        self.producer.send('feature_updates', event)
    
    def _periodic_training(self):
        """定期训练模型"""
        while True:
            time.sleep(3600)  # 每小时训练一次
            
            # 收集训练数据
            X, y = self._prepare_training_data()
            
            if len(X) > 100:  # 有足够数据才训练
                with self.model_lock:
                    if not self.is_model_trained:
                        self.model.fit(X, y)
                        self.is_model_trained = True
                    else:
                        # 增量训练
                        self.model.partial_fit(X, y)
                    
                    # 保存模型
                    self._save_model()
    
    def _prepare_training_data(self):
        """准备训练数据(简化版)"""
        # 在实际应用中,这里应该从特征存储中获取数据
        X = []
        y = []
        
        # 模拟一些训练数据
        for user_id, user_feats in self.user_features.items():
            if 'purchase_count' in user_feats:
                # 简单特征工程
                features = [
                    user_feats.get('view_count', 0),
                    user_feats.get('purchase_count', 0),
                    len(user_feats.get('recent_items', []))
                ]
                X.append(features)
                y.append(1 if user_feats['purchase_count'] > 0 else 0)
        
        return np.array(X), np.array(y)
    
    def _save_model(self):
        """保存模型到文件"""
        with open('latest_model.pkl', 'wb') as f:
            pickle.dump(self.model, f)
        
        # 发送模型更新事件
        event = {
            'type': 'model_update',
            'model_path': 'latest_model.pkl',
            'timestamp': int(time.time())
        }
        self.producer.send('model_updates', event)
    
    def recommend(self, user_id, top_n=5):
        """生成推荐"""
        if not self.is_model_trained:
            return []
        
        user_feats = self.user_features.get(user_id, {})
        if not user_feats:
            return []
        
        # 准备用户特征向量
        user_vector = [
            user_feats.get('view_count', 0),
            user_feats.get('purchase_count', 0),
            len(user_feats.get('recent_items', []))
        ]
        
        # 为每个物品计算得分
        scores = []
        with self.model_lock:
            for item_id, item_feats in self.item_features.items():
                # 在实际应用中,这里应该有更复杂的特征组合
                full_features = user_vector + list(item_feats.values())
                score = self.model.predict_proba([full_features])[0][1]
                scores.append((item_id, score))
        
        # 返回得分最高的物品
        scores.sort(key=lambda x: x[1], reverse=True)
        return [item_id for item_id, score in scores[:top_n]]

# 使用示例
if __name__ == '__main__':
    recommender = RealTimeRecommender()
    
    # 模拟一些事件
    def simulate_events():
        events = [
            {'type': 'new_item', 'data': {'item_id': 'book1', 'features': {'price': 20, 'category': 1}}},
            {'type': 'new_item', 'data': {'item_id': 'book2', 'features': {'price': 30, 'category': 2}}},
            {'type': 'user_action', 'data': {'user_id': 'user1', 'item_id': 'book1', 'action_type': 'view'}},
            {'type': 'user_action', 'data': {'user_id': 'user1', 'item_id': 'book1', 'action_type': 'purchase'}},
            {'type': 'user_action', 'data': {'user_id': 'user1', 'item_id': 'book2', 'action_type': 'view'}},
        ]
        
        for event in events:
            recommender.producer.send('user_events', event)
            time.sleep(1)
    
    threading.Thread(target=simulate_events).start()
    
    # 模拟推荐请求
    while True:
        time.sleep(5)
        print("Recommendations for user1:", recommender.recommend('user1'))

代码解读与分析

这个实现包含以下关键组件:

  1. 事件生产者与消费者:

    • 使用Kafka作为消息中间件
    • 生产者负责发送特征更新和模型更新事件
    • 消费者线程持续处理用户行为和物品更新事件
  2. 特征管理:

    • 使用内存中的字典缓存用户和物品特征
    • 在实际应用中应该使用特征存储(如Redis或专用特征存储系统)
  3. 模型训练:

    • 使用Scikit-learn的SGDClassifier支持增量学习
    • 定期训练线程每小时触发一次训练
    • 支持冷启动(初始训练)和热启动(增量训练)
  4. 模型服务:

    • 提供推荐接口
    • 使用线程锁保证模型更新的线程安全
  5. 模型部署:

    • 训练完成后保存模型文件
    • 发送模型更新事件通知其他服务加载新模型

实际应用场景

事件驱动架构下的AI模型实时更新在以下场景中特别有价值:

  1. 金融风控系统:

    • 实时检测异常交易模式
    • 随着新型欺诈手段出现快速更新模型
  2. 推荐系统:

    • 捕捉用户兴趣的实时变化
    • 及时反映新品上市或热点事件
  3. 物联网(IoT)监控:

    • 实时调整设备异常检测阈值
    • 适应设备老化或环境变化
  4. 内容审核:

    • 快速适应新型违规内容模式
    • 实时学习人工审核员的反馈
  5. 智能客服:

    • 根据用户反馈实时优化对话策略
    • 快速适应新产品或服务的变化

工具和资源推荐

开源工具

  1. 消息队列/流处理:

    • Apache Kafka
    • Apache Pulsar
    • RabbitMQ
  2. 流处理框架:

    • Apache Flink
    • Apache Spark Streaming
    • Faust (Python库)
  3. 在线学习库:

    • River (Python)
    • Vowpal Wabbit
    • TensorFlow Extended (TFX)
  4. 特征存储:

    • Feast
    • Hopsworks
    • Tecton
  5. 模型服务:

    • TensorFlow Serving
    • Seldon Core
    • BentoML

云服务

  1. AWS:

    • Amazon MSK (Managed Kafka)
    • Kinesis (数据流)
    • SageMaker (模型训练和部署)
  2. GCP:

    • Pub/Sub (消息队列)
    • Dataflow (流处理)
    • Vertex AI (机器学习平台)
  3. Azure:

    • Event Hubs (事件处理)
    • Stream Analytics
    • Machine Learning Service

学习资源

  1. 书籍:

    • “Designing Event-Driven Systems” by Ben Stopford
    • “Building Machine Learning Powered Applications” by Emmanuel Ameisen
    • “Machine Learning Engineering” by Andriy Burkov
  2. 在线课程:

    • Coursera: “Event-Driven Architectures on AWS”
    • Udacity: “Machine Learning DevOps Engineer Nanodegree”
    • edX: “Real-Time Analytics with Apache Kafka”

未来发展趋势与挑战

发展趋势

  1. 更智能的自动更新策略:

    • 基于模型性能监控的智能触发
    • 更新策略的元学习
  2. 边缘计算集成:

    • 分布式模型更新
    • 边缘设备的增量学习
  3. 多模型协同更新:

    • 模型集合的协调更新
    • 专家模型的动态组合
  4. 因果学习集成:

    • 结合因果推理的在线学习
    • 干预感知的模型更新

挑战

  1. 数据一致性:

    • 事件顺序保证
    • 恰好一次(Exactly-once)处理语义
  2. 模型稳定性:

    • 灾难性遗忘问题
    • 增量学习中的偏差累积
  3. 系统复杂性:

    • 分布式事务管理
    • 回滚机制设计
  4. 评估难题:

    • 实时模型性能评估
    • A/B测试的复杂性增加
  5. 安全与合规:

    • 数据隐私保护
    • 模型可解释性要求

总结:学到了什么?

核心概念回顾

  1. 事件驱动架构:

    • 基于事件的松耦合系统设计
    • 支持实时数据流动和处理
  2. 模型实时更新:

    • 增量学习和在线学习技术
    • 无缝模型切换策略
  3. 流式特征处理:

    • 实时特征工程
    • 特征存储的设计考虑

概念关系回顾

  1. EDA为实时更新提供基础设施:

    • 事件作为数据流动的载体
    • 消息队列保证可靠传递
  2. 流处理支撑特征实时计算:

    • 窗口聚合操作
    • 流式标准化和编码
  3. 增量学习实现模型持续进化:

    • 部分拟合(partial_fit)机制
    • 在线评估指标跟踪

思考题:动动小脑筋

思考题一:
如果你的模型需要同时处理来自多个地区的数据,而这些地区的网络延迟差异很大,你会如何设计事件处理流程来保证模型更新的及时性和一致性?

思考题二:
当模型实时更新过程中突然出现数据质量问题(如传感器故障导致异常值激增),你会如何检测这种情况并采取保护措施?

思考题三:
如何设计一个系统,使得业务人员(非技术人员)能够通过简单的界面操作触发特定模型的实时更新,同时保证系统的安全性和稳定性?

附录:常见问题与解答

Q1: 事件驱动架构和传统轮询方式相比有什么优势?

A1: 事件驱动架构的主要优势包括:

  • 实时性:事件立即触发处理,无需等待轮询间隔
  • 资源效率:只在事件发生时消耗资源,而不是持续检查
  • 松耦合:生产者和消费者不需要相互知晓
  • 可扩展性:容易添加新的事件消费者

Q2: 如何决定模型更新的频率?

A2: 更新频率应该基于以下因素综合考虑:

  • 数据变化速度:数据分布变化越快,更新应该越频繁
  • 模型性能衰减:监控模型性能下降速度
  • 业务需求:关键业务可能需要更频繁更新
  • 计算成本:平衡更新成本和收益
  • 通常可以从每小时一次开始,然后根据监控调整

Q3: 实时更新会不会导致模型不稳定?

A3: 确实有这种风险,可以通过以下方法缓解:

  • 实施影子模式(Shadow Mode):新模型先并行运行不直接影响生产
  • 使用学习率调度:逐渐降低学习率
  • 实施模型回滚机制:当检测到性能下降时自动回退
  • 添加正则化项:防止参数剧烈变化
  • 维护模型版本历史:便于分析和回滚

扩展阅读 & 参考资料

  1. 官方文档:

    • Apache Kafka: https://kafka.apache.org/documentation/
    • Apache Flink: https://flink.apache.org/
    • River: https://riverml.xyz/
  2. 研究论文:

    • “Online Learning: A Comprehensive Survey” by Steven C.H. Hoi et al.
    • “Machine Learning in Event-Based Systems” by P. Pietzuch et al.
  3. 技术博客:

    • “Real-Time Machine Learning with Event-Driven Architectures” on Confluent blog
    • “Building Continuous Learning Systems” by DoorDash Engineering
  4. 开源项目:

    • Feast (Feature Store): https://feast.dev/
    • BentoML (Model Serving): https://www.bentoml.com/
  5. 行业案例研究:

    • Uber’s Michelangelo ML Platform
    • Netflix’s Real-Time Recommendation System
    • LinkedIn’s Photon-ML
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值