目录
写在前面
本篇不介绍熵权法以及topsis分析法的详细原理 若想了解请移步其他博客!!!
恰恰相反,本篇为懒人福利,适用于数学建模等需要快速解决问题的赛事。
一、算法简述
1.topsis分析法
topsis算法是一种常见的综合评价办法,适用于有多个指标时的方案选择问题,如下图所示
ps:以下数据为自行创造 仅用于讲解
方案\指标 | 可采矿量 | 基建投资 | 土地PH值 | 人员 |
方案1 | 5212 | 5000 | 5.7 | 45 |
方案2 | 3615 | 2600 | 4.0 | 32 |
方案3 | 5011 | 5412 | 5.0 | 43 |
方案4 | 4038 | 3200 | 4.3 | 38 |
方案5 | 4462 | 3600 | 4.8 | 40 |
通过topsis分析法我们可以通过优劣分析,为五个方案分别赋予一个评分,显然评分越高,综合考量下来优势越大。
2.熵权法
我们已经知道topsis分析法可以给每个方案一个评分,但这个评分是在各个指标所占权重相同的前提下来算的,但我们遇到的问题大部分肯定有的指标重要,有的不那么重要,我们又不能去主观给他赋权重,这个问题应该怎么解决?没错,熵权法可以!
熵权法是一种客观赋权方法,通过计算指标的信息熵,根据相对变化程度对整体的影响来决定指标权重。(不懂不要紧 会用就行)
3.两种算法的结合
了解了两种算法的基本原理,我们很容易想到,可以通过熵权法算出各指标的权重,进而通过topsis分析法进行评分,就能得到可信度较高的结果
二、算法步骤
1.判断指标类型
topsis模型一般是在所有指标均为极大型指标(数据越大越好)的基础上进行运算的,因此要判断各个指标都是什么类型,方便后面进行数据正向化。
一般的常见类型有
极大型(数据越大越好) 比如上方表格中的可采矿量
极小型(数据越小越好) 比如上方表格中的基建投资
中间型(数据稳定在某个固定的值最好) 比如上方表格里的ph最好保持在4.3
区间型(数据在某个区间内最好)比如上方表格中的人员最好在[30,40]之间
2.数据正向化
极小型数据(PS:当数据不全为正数时 只能使用第二个公式)
上面表格的基建投资为极小型数据 我们采用第二个公式来正向化
方案\基建投资 | 正向化前 | 正向化后 |
方案1 | 5000 | 412 |
方案2 | 2600 | 2812 |
方案3 | 5412 | 0 |
方案4 | 3200 | 2212 |
方案5 | 3600 | 1812 |
中间型数据
首先应该输入一个中间最优值再进行正向化
上面表格的土地PH值为中间型数据 我们的是4.3
方案\土地PH | 正向化前 | 正向化后 |
方案1 | 5.7 | 0 |
方案2 | 4.0 | 0.7857 |
方案3 | 5.0 | 0.5 |
方案4 | 4.3 | 1 |
方案5 | 4.8 | 0.6429 |
区间型数据
首先应该输入区间下限a和区间上限b再进行正向化