目录
239. 滑动窗口最大值
题目链接:力扣
思路
这道题目暴力解法是很容易写出来的,但是暴力解法的时间复杂度为O(n*k)(n为遍历数组的长度,k为遍历滑动窗口的长度),会超出时间限制。
所以我们需要降低时间复杂度,遍历数组是不可避免的,如果获取滑动窗口中的最大值时间复杂度为O(1)就可以了
对于在加入的同时我们能求出最大值,首先可能想到的是优先队列,也就是大顶堆,但是滑动窗口的最大值是不断更新的,所以是不太适合的,要想整也是可以的,时间复杂度为O(n*logk)
这里使用一种叫做单调队列的思想:对这道题目来说,希望这个队列中的数字一直是单调递减的,这样每次站在队头的就是最大值
因为没有单调队列这样的数据结构,所以我们需要实现单调队列,对于这个题目:
1、实现获取最大值的功能getMaxNum() -- 获取队列的队头就可以
2、实现窗口的滑动poll() -- 移动窗口:①当移动窗口的时候,队头的值如果还是上一个窗口的第一个值(说明上一个滑动窗口的第一个值就是最大值)的时候,就需要将此数poll();②如果不是上一个窗口的第一个值,那说明已经被最大值干掉了,不进行操作,此时队列中的队头是除下一个窗口的最后一个数组的最大值
3、实现窗口的添加push() -- 添加元素:因为我们要实现的是单调队列,所以在添加进去前要跟队列的元素进行比较,比待添加的元素要小的时候,就要将值弹出,因为这个队列是单调递减的,所以我们从队列的后面开始进行比较,如果小于就弹出,知道队列中的元素都比待添加的值大,再将元素添加进去
将单调队列实现好之后我们就可以很好地比较窗口中的最大值了,其中getMaxNum()方法不用说,一直保持队头是最大值。
poll()更多的是判断队头是不是上一个窗口的第一个元素,因为队列中要保持只有k个元素,这里有两种极端情况和一种常见情况,下图示例:
push()方法做了比较的事,再加入队列的时候就进行比较,是保持队列窗口单调的关键,下图举一下例:
上面两张图中基本就将所有情况都包含在内了,图和代码结合起来看更加清楚明了
滑动窗口最大值
第一步:自定义单调队列
第二步:创建存放结果的数组,创建窗口队列
第三步:先将前k个元素放入窗口中,也就是指定了窗口的大小
第四步:遍历数组,获取窗口的最大值
每次移动窗口,先poll(),再push(),保证了窗口中的元素
获取窗口最大值
第五步:返回最大值数组
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums.length == 1) {
return nums;
}
// 创建存放结果的数组
int len = nums.length - k + 1; // 计算存放结果的数组的长度
int[] result = new int[len];
int index = 0; // 存放结果的数组的下标
// 创建自定义的单调队列
MyQueue myqueue = new MyQueue();
// 先将前k个元素放入队列中(在这个放入的过程中排序已经开始了)
for (int i = 0; i < k; i++) {
myqueue.push(nums[i]);
}
// 上面这个for循环走完的时候,第一个窗口的最大值就站在队头的了
result[index++] = myqueue.getMaxNum(); // 获取到了第一个窗口的最大值并存放结果,移动下标
// 滑动窗口开始移动,因为队列中现在已经添加了k个值了
// 滑动窗口每次出队一个,入队一个
for (int i = k; i < nums.length; i++) {
// 先出队,如果是上一个滑动窗口的第一个元素,就让它出队
myqueue.poll(nums[i - k]);
// 再入队,入队的时候,自定义队列的添加方法会自动判断,保证窗口的队头是最大值
myqueue.push(nums[i]);
// 获取这个窗口对应的最大值
result[index++] = myqueue.getMaxNum();
}
return result;
}
}
class MyQueue {
Deque<Integer> deque = new LinkedList<>();
// 弹出元素时,比较当前要弹出的数值是否相等队头的数值
// 如果队头的元素和传入的数值是一样的,说明队列中有k个元素,是满的,在上一个窗口中,窗口的第一个元素就是最大值
// 如果队头的元素和传入的数值是不一样的,说明窗口的第一个元素已经被窗口中的最大值干掉了,不用进行窗口移动操作了
void poll (int val) {
if (!deque.isEmpty() && val == deque.peek()) {
deque.poll();
}
}
// 添加元素的时候,如果添加的元素大于在队列中的元素,就要将元素弹出
// 保证队列中的元素是单调递减的
void push (int val) {
while (!deque.isEmpty() && val > deque.getLast()) {
deque.pollLast();
}
deque.offerLast(val);
}
int getMaxNum() {
return deque.peek();
}
}
347.前 K 个高频元素
题目链接:力扣
思路
这道题目的整体思路还是比较简单的,就是代码不好写
我们是要计算出现频率前k高的元素,思路主要分为三步:
1、记录每个数字出现过的次数
2、对数字出现的次数进行排序
3、返回前k个出现频率高的数字
思路是不是挺简单的,但是代码不容易,要怎么记录,要怎么存储数据,要怎么进行排序……是这个题目的难点,下面一一进行拆解:
1、记录每个数字出现过的次数:
这种记录某元素出现过多少次的要求,最合适的就是Map集合,这里key代表数字,value代表数字出现过的次数
2、对数字出现的次数进行排序:
如果对所有的value进行排序的话,时间复杂度会比较高。像这种前k个、出现次数最高的,我们可以使用大顶堆和小顶堆的思路,大顶堆和小顶堆都是可以自动排序的,然后我们只需要维持顶堆中的前k个元素就可以了
因为这里我们维护的元素是固定的,前k个,如果使用大顶堆,k个元素满了之后,再加进来元素,最大的元素就要被推出顶堆,所以不合适。如果不维护固定的个数使用大顶堆也是可以的哈
因此我们要使用小顶堆,这样,k个元素满了之后,再加入元素,最小的元素就会被推出顶堆
java中实现小顶堆和大顶堆的就是PriorityQueue<E>,是一个基于优先级堆的无界优先级队列。排序需要Comparator,用来自定义排序的方法
对Comparator接口进行说明:
到此,排序的数据结构我们也选择好了
3、返回前k个出现频率高的数字
按照小顶堆进行排序后,PriorityQueue队列中队尾是出现频率最多的元素,往队头的方向逐渐减少,所以想数组存放数字的时候,从后往前存放就可以
前 K 个高频元素
使用大顶堆的思路
第一步:使用Map集合记录每个数字出现过的次数
key代表数字本身
value代表数字出现过的次数
第二步:使用PriorityQueue优先队列维护出现频率最高的前k个数字
优先队列需要排序,排序需要比较器,比较器比较的是value的元素
将集合中的每个键值对的key和value包装到一个二元组中int[key,value]
先将map集合通过entrySet()方法转换成Set集合
Set集合中是每个键值对的set映射,每个对象可以获取到key和value
遍历Set集合中的元素,将每个对象转换成二元组[key,value]的形式添加到优先队列中
第三步:使用数组记录频率前k高的数字
优先队列中推出前k个元素,将其中每个对象的key添加到数组中
class Solution {
public int[] topKFrequent(int[] nums, int k) {
// 首先使用Map统计每个数字出现的频率
// key代表的是数字本身
// value代表数字出现过的次数
Map<Integer,Integer> map = new HashMap();
for (int num : nums) {
map.put(num , map.getOrDefault(num,0)+1);
}
// 使用优先级队列,按照数字出现过的次数从大到小进行排序
// 将集合元素中的key和Value转换成int[key,value]进行保存
// 创建优先队列,定义集合中的元素类型为int[],定义集合中的比较器为(int1,int2)->int2[1]-int1[1](根据value进行比较排序)
PriorityQueue<int[]> pq = new PriorityQueue<>((int1,int2)->int2[1]-int1[1]);
// 将Map集合转换成Set集合,才可以对map集合进行遍历
Set<Map.Entry<Integer,Integer>> entrys = map.entrySet();
// 将集合中的元素按照value排序添加到PriorityQueue集合中
for (Map.Entry<Integer,Integer> entry : entrys) {
pq.add(new int[]{entry.getKey(),entry.getValue()});
}
// 创建接收结果的数组
int[] result = new int[k];
// 将优先队列中的前k个数组中的key添加到数组中
for (int i = 0; i < k; i++) {
result[i] = pq.poll()[0];
}
return result;
}
}
使用小顶堆的思路
class Solution{
public int[] topKFrequent2(int[] nums, int k) {
Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
for(int num:nums){
map.put(num,map.getOrDefault(num,0)+1);
}
//在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
//出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
for(Map.Entry<Integer,Integer> entry:map.entrySet()){//小顶堆只需要维持k个元素有序
if(pq.size()<k){//小顶堆元素个数小于k个时直接加
pq.add(new int[]{entry.getKey(),entry.getValue()});
}else{
if(entry.getValue()>pq.peek()[1]){//当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
pq.poll();//弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
pq.add(new int[]{entry.getKey(),entry.getValue()});
}
}
}
int[] ans = new int[k];
for(int i=k-1;i>=0;i--){//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
ans[i] = pq.poll()[0];
}
return ans;
}
}