一、基础学习阶段(1-2学期)
大家好,我是华子哥,末9计算机保研清华。目前,各个学科和人工智能技术结合得越来越紧密,如深度学习、计算机视觉、大语言模型。所以简单给各位学弟学妹分享一下本科生学习人工智能的路径,把我踩过的坑告诉大家。
-
数学基础:数学基础不是很重要。这里面最重要的线性代数,要把矩阵学好。因为GPU是并行运算的,深度学习玩的就是张量的维度。具体来说有以下内容:
- 线性代数:矩阵运算、特征值、奇异值分解等。
- 概率与统计:随机变量、分布、期望、方差、贝叶斯理论等。
- 微积分:函数极限、偏导数、梯度、优化算法的基础。
-
编程与数据结构:编程直接无脑冲python,0基础也可以上,同时还要学好数据结构。因为有很多算法是基于数据结构的概念来的。
- Python编程:学习Python语言基础,掌握NumPy、Pandas、Matplotlib等科学计算库。
- 数据结构与算法:掌握数组、链表、栈、队列、图、树等数据结构,学习排序、查找、动态规划等算法。
-
计算机基础:计算机专业传统的四大天书分别是计算机操作系统,计算机网路,计算机数据结构,计算机组成与原理。这块不是特别重要,反而要注意学好数据库。
- 计算机组成原理:了解计算机硬件和操作系统的基础。
- 数据库:学习SQL及基本的数据库设计。
-
人工智能基础:按照机器学习-深度学习的路径来,B站上有很多课程都很适合入门,想深入学习可以去学习一下《多元统计分析》这门课。
- 人工智能概念:机器学习、深度学习、自然语言处理等基本概念。
- 机器学习基础:线性回归、决策树、支持向量机(SVM)、聚类算法等。
二、进阶学习阶段(1学期)
-
深度学习与神经网络
- 神经网络基础:了解感知机、多层感知机(MLP)、反向传播算法。
- 深度学习框架:掌握TensorFlow或PyTorch等常用框架的使用。
- 卷积神经网络(CNN):用于图像处理的基本模型和技术。
- 循环神经网络(RNN):用于处理序列数据,如时间序列、文本数据等。
-
自然语言处理(NLP)
- 文本处理:分词、词性标注、命名实体识别(NER)、情感分析等。
- 语言模型:N-gram模型、Word2Vec、BERT等预训练模型。
- 机器翻译与语音识别:学习基本的翻译算法与语音处理技术。
-
强化学习与自主系统
- 强化学习:Q-learning、深度强化学习(DQN)。
- 自主系统:机器人控制、路径规划等。
-
AI应用与项目
- 实战项目:结合实际应用进行项目开发,如图像分类、推荐系统、聊天机器人等。
- 大数据与AI:学习如何处理和分析大规模数据集,掌握Hadoop、Spark等大数据技术。
三、联系老师入组(越早越好)
- 参与AI相关的科研项目,尤其是机器学习、计算机视觉等领域的实验。
- 参加学术会议或竞赛,如Kaggle比赛、ACM-ICPC等。
- 尽早联系老师入组,积累丰富的科研经验,尽在参与攥写论文
通过这些努力,希望你也能和我一样,入门人工智能,实现保研升学等目标!