本科生的人工智能(AI)学习路径

一、基础学习阶段(1-2学期)

     大家好,我是华子哥,末9计算机保研清华。目前,各个学科和人工智能技术结合得越来越紧密,如深度学习、计算机视觉、大语言模型。所以简单给各位学弟学妹分享一下本科生学习人工智能的路径,把我踩过的坑告诉大家。

  1. 数学基础:数学基础不是很重要。这里面最重要的线性代数,要把矩阵学好。因为GPU是并行运算的,深度学习玩的就是张量的维度。具体来说有以下内容:

    • 线性代数:矩阵运算、特征值、奇异值分解等。
    • 概率与统计:随机变量、分布、期望、方差、贝叶斯理论等。
    • 微积分:函数极限、偏导数、梯度、优化算法的基础。
  2. 编程与数据结构:编程直接无脑冲python,0基础也可以上,同时还要学好数据结构。因为有很多算法是基于数据结构的概念来的。

    • Python编程:学习Python语言基础,掌握NumPy、Pandas、Matplotlib等科学计算库。
    • 数据结构与算法:掌握数组、链表、栈、队列、图、树等数据结构,学习排序、查找、动态规划等算法。
  3. 计算机基础:计算机专业传统的四大天书分别是计算机操作系统,计算机网路,计算机数据结构,计算机组成与原理。这块不是特别重要,反而要注意学好数据库。

    • 计算机组成原理:了解计算机硬件和操作系统的基础。
    • 数据库:学习SQL及基本的数据库设计。
  4. 人工智能基础:按照机器学习-深度学习的路径来,B站上有很多课程都很适合入门,想深入学习可以去学习一下《多元统计分析》这门课。

    • 人工智能概念:机器学习、深度学习、自然语言处理等基本概念。
    • 机器学习基础:线性回归、决策树、支持向量机(SVM)、聚类算法等。

二、进阶学习阶段(1学期)

  1. 深度学习与神经网络

    • 神经网络基础:了解感知机、多层感知机(MLP)、反向传播算法。
    • 深度学习框架:掌握TensorFlow或PyTorch等常用框架的使用。
    • 卷积神经网络(CNN):用于图像处理的基本模型和技术。
    • 循环神经网络(RNN):用于处理序列数据,如时间序列、文本数据等。
  2. 自然语言处理(NLP)

    • 文本处理:分词、词性标注、命名实体识别(NER)、情感分析等。
    • 语言模型:N-gram模型、Word2Vec、BERT等预训练模型。
    • 机器翻译与语音识别:学习基本的翻译算法与语音处理技术。
  3. 强化学习与自主系统

    • 强化学习:Q-learning、深度强化学习(DQN)。
    • 自主系统:机器人控制、路径规划等。
  4. AI应用与项目

    • 实战项目:结合实际应用进行项目开发,如图像分类、推荐系统、聊天机器人等。
    • 大数据与AI:学习如何处理和分析大规模数据集,掌握Hadoop、Spark等大数据技术。

三、联系老师入组(越早越好)

  • 参与AI相关的科研项目,尤其是机器学习、计算机视觉等领域的实验。
  • 参加学术会议或竞赛,如Kaggle比赛、ACM-ICPC等。
  • 尽早联系老师入组,积累丰富的科研经验,尽在参与攥写论文

通过这些努力,希望你也能和我一样,入门人工智能,实现保研升学等目标!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值