背包问题(完全背包问题)

结论:完全背包问题就是01背包问题的遍历顺序相反。

区别:完全背包问题每个物品可用无限次,01背包问题每个物品只能用1次

完全背包问题DP步骤:

1.状态表示:

f[i][j]表示的哪一个集合?所有只从前i个物品选,总体积不超过j的方案的集合

f[i][j]存的值是集合的哪个属性?(问的是啥就是啥,问最大值,属性就是最大值)

2.状态计算:

01背包问题枚举的是选和不选两个集合,完全背包问题可以选无限多个,直到选到体积超过v为止,所以要划分为若干个子集

01背包:f[ i ][ j ] = max(f[ i - 1 ][ j ] , f[ i - 1 ][ j - v ] + w)

完全背包:f[ i ][ j ] = max(f[ i - 1 ][ j ] , f[ i ][ j - v ] + w)  (区别在于i和i-1导致枚举时顺序相反)

 朴素做法

#include<iostream>
#include<algorithm>
#include<cmath>
const int N=1010;
int n,m;
int f[N][N];
int v[N],w[N];
using namespace std;
 
int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++){  //枚举所有的物品
        for(int j=0;j<=m;j++){  //从前往后枚举所有的体积,然后转移
            f[i][j]=f[i-1][j];  
            if(j>=v[i]){  //j>=v[i]时才能选
                f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);  
            }
        }
    }
   
    cout<<f[n][m]<<endl;
}

优化代码:

#include<iostream>
#include<algorithm>
#include<cmath>
const int N=1010;
int n,m;
int f[N];
int v[N],w[N];
using namespace std;
 
int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++){  
        for(int j=v[i];j<=m;j++){  
           f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
   
    cout<<f[m]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值