结论:完全背包问题就是01背包问题的遍历顺序相反。
区别:完全背包问题每个物品可用无限次,01背包问题每个物品只能用1次
完全背包问题DP步骤:
1.状态表示:
f[i][j]表示的哪一个集合?所有只从前i个物品选,总体积不超过j的方案的集合
f[i][j]存的值是集合的哪个属性?(问的是啥就是啥,问最大值,属性就是最大值)
2.状态计算:
01背包问题枚举的是选和不选两个集合,完全背包问题可以选无限多个,直到选到体积超过v为止,所以要划分为若干个子集
01背包:f[ i ][ j ] = max(f[ i - 1 ][ j ] , f[ i - 1 ][ j - v ] + w)
完全背包:f[ i ][ j ] = max(f[ i - 1 ][ j ] , f[ i ][ j - v ] + w) (区别在于i和i-1导致枚举时顺序相反)
朴素做法
#include<iostream>
#include<algorithm>
#include<cmath>
const int N=1010;
int n,m;
int f[N][N];
int v[N],w[N];
using namespace std;
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
for(int i=1;i<=n;i++){ //枚举所有的物品
for(int j=0;j<=m;j++){ //从前往后枚举所有的体积,然后转移
f[i][j]=f[i-1][j];
if(j>=v[i]){ //j>=v[i]时才能选
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
}
}
}
cout<<f[n][m]<<endl;
}
优化代码:
#include<iostream>
#include<algorithm>
#include<cmath>
const int N=1010;
int n,m;
int f[N];
int v[N],w[N];
using namespace std;
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
for(int i=1;i<=n;i++){
for(int j=v[i];j<=m;j++){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[m]<<endl;
}