某电力系统使用四种不同类型的发电机来满足用电需求。已知每日各时段的电力需求如表1。
表1:每日用电需求(兆瓦,MW)
时段(0-24) | 0-5 | 5-7 | 7-10 | 10-13 | 13-17 | 17-20 | 20-22 | 22-24 |
需求 | 10000 | 20000 | 24000 | 32000 | 25000 | 26000 | 15000 | 12000 |
每种发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于某一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。
表2:发电机情况
可用数量 | 最小输出功率(MW) | 最大输出功率(MW) | 固定成本(元/小时) | 每兆瓦边际成本(元/小时) | 启动成本 | |
型号1 | 10 | 800 | 1800 | 2200 | 2.7 | 4000 |
型号2 | 5 | 1000 | 1500 | 1800 | 2.2 | 1600 |
型号3 | 8 | 1200 | 2000 | 3800 | 1.8 | 2400 |
型号4 | 4 | 1800 | 3500 | 4600 | 3.6 | 1200 |
只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。
问题(1) 在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少?
问题(2) 如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少?
选做:(做完了问题(1)和问题(2)且学有余力的同学请继续)
问题(3) 如果每日每个时段电力需求在表1的基础上有30%左右的波动,并且系统没有储能。此时按照问题(1)的发电计划,可能会产生两种情况:
1)系统失负荷(即用电需求量大于发电量),
2)发电量大于需求量,造成电力浪费。
假设失负荷损失为q(单位:元/兆瓦),假设q分别取值q=600和 q=5000那么每个时段又应该如何安排发电机组发电?