851. spfa求最短路

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出 11 号点到 nn 号点的最短距离,如果无法从 11 号点走到 nn 号点,则输出 impossible

数据保证不存在负权回路。

输入格式

第一行包含整数 nn 和 mm。

接下来 mm 行每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

输出格式

输出一个整数,表示 11 号点到 nn 号点的最短距离。

如果路径不存在,则输出 impossible

数据范围

1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 1e6+10;
int h[N],e[N],w[N],ne[N],dist[N],idx;
bool st[N];
int n,m;
void add(int a,int b,int c)
{
    e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++;
}
int spfa()
{
    memset(dist,0x3f,sizeof dist);
    dist[1]=0;
    queue<int>q;
    q.push(1);st[1]=true;
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return dist[n];
}
int main()
{
    scanf("%d%d", &n, &m);
    memset(h,-1,sizeof h);
    while (m -- ){
        int a,b,c;
        scanf("%d%d%d", &a, &b,&c);
        add(a,b,c);
    }
    int t=spfa();
    if(t==0x3f3f3f3f)puts("impossible");
    else printf("%d\n",t);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值