题目描述
呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 �i 层楼(1≤�≤�1≤i≤N)上有一个数字 ��Ki(0≤��≤�0≤Ki≤N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: 3,3,1,2,53,3,1,2,5 代表了 ��Ki(�1=3K1=3,�2=3K2=3,……),从 11 楼开始。在 11 楼,按“上”可以到 44 楼,按“下”是不起作用的,因为没有 −2−2 楼。那么,从 �A 楼到 �B 楼至少要按几次按钮呢?
输入格式
共二行。
第一行为三个用空格隔开的正整数,表示 �,�,�N,A,B(1≤�≤2001≤N≤200,1≤�,�≤�1≤A,B≤N)。
第二行为 �N 个用空格隔开的非负整数,表示 ��Ki。
输出格式
一行,即最少按键次数,若无法到达,则输出 -1
。
输入输出样例
输入 #1复制
5 1 5 3 3 1 2 5
输出 #1复制
3
说明/提示
对于 100%100% 的数据,1≤�≤2001≤N≤200,1≤�,�≤�1≤A,B≤N,0≤��≤�0≤Ki≤N。
本题共 1616 个测试点,前 1515 个每个测试点 66 分,最后一个测试点 1010 分。
思路讲解:
很普遍的一个广度优先搜索的模板题。
设置一个布尔数组boole(命名比较随意,因为英文不好,请见谅)用于记录是否访问访问过当前楼层,防止对已经访问过的楼层重复访问(类似剪枝)。
设置一个队列queue用于存储当前楼层,设置一个队列presses用于存储楼层对应的按键次数。
进入循环wile,当队列queue不为空时一直循环,定义局部变量Floor和p分别取得队列queue和presses的值,因为队列是先进先出的,因此当前楼层与按键次数是一一对应的,当然这里也可以使用map集合来替代,但代码会更复杂。
全AC代码:
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int a = scanner.nextInt();
int b = scanner.nextInt();
int[] k = new int[n];
for(int i = 0; i < n; i++){
k[i] = scanner.nextInt();
}
int result = ff(n, a, b, k);
System.out.println(result);
}
private static int ff(int n, int a, int b, int[] k){
if(a == b){
return 0;
}
if(k[a - 1] == 0){
return -1;
}
boolean[] boole = new boolean[n + 1]; //记录已经访问过的楼层
boole[a] = true;
Queue<Integer> queue = new LinkedList<>(); //存储当前楼层
Queue<Integer> presses = new LinkedList<>(); //按键次数
queue.add(a);
presses.add(0);
while (!queue.isEmpty()){
int Floor = queue.poll(); //当前楼层
int p = presses.poll(); //当前楼层已经按的次数 警告问题(idea毛病,int怎么可能报null呢)
//上楼
int upFloor = Floor + k[Floor - 1];
if(upFloor <= n && !boole[upFloor]){
if(upFloor == b){
return p + 1; //到达目标楼层,返回按键次数
}
queue.add(upFloor);
presses.add(p + 1);
boole[upFloor] = true;
}
//下楼
int downFloor = Floor - k[Floor - 1];
if(downFloor >= 1 && !boole[downFloor]){
if (downFloor == b) {
return p + 1; //到达目标楼层,返回按键次数
}
queue.add(downFloor);
presses.add(p + 1);
boole[downFloor] = true;
}
}
return -1; //无法到达目标楼层
}
}