倍增与ST表

总说

一、算法介绍

1.1 ST表——O(nlogn + m)

通常用于快速求出一个子区间的最大值,最小值等等,这里以最大值为例

缺点:ST表是静态的,不支持修改操作。

ST表本质上是基于倍增思想的动态规划。

算法介绍

我们规定:

f[i][j]表示:从i开始向后,长度为2^j的区间中的最大值

如果我们想求f[i][j],我们可以把区间均分为2部分

2部分区间长度为2^(j - 1),第二个区间的起点就是:i + 2 ^(j - 1)

则转移方程就为:

f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);

我们预处理完之后,我们改如何查询?如图

假设我们要求[L, R]区间的最大值,区间长度为len,则我们能找到一个最大的k,使得:

len\leqslant2 ^{k}

即:k\leqslant {log_{2}}^{len}

则有2 * 2^{k} > len

如图:

中间虽然有重复,但是由于我们求的最大值,就算重复比较但是并不会改变结果

具体到转移方程如下:

至此,我们就学习完了。

中间对于k的求解,我们可以用cmath中的log(x)函数,

代码表示如下:

int k = log(len) / log(2);

起点有n个,对于每个起点要预处理logn次,有m次询问,所以总时间复杂度为O(nlogn + m)

代码模板

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>

using namespace std;

const int N = 2e5 + 10;
const int M = 18;

int n, m;
int f[N][M], w[N];//f[i][j]表示:从i开始 长度为2^j的区间 中的最大值

void init() // 初始化st表
{   
    //类似区间dp,第一维是区间长度,第二维是起点
    for(int j = 0; j < M; j++) //2^0 到2^M-1 枚举长度
        for(int i = 1; i + (1 << j) - 1 <= n; i++) //枚举起点,右端点不能超出界限
        {
            if(!j) //如果长度为1
                f[i][j] = w[i];
            else //将区间一分为2,长度均为2^(j-1),取2个区间的最大值
                f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);    
        }
}

int query(int l, int r)
{
    int len = r - l + 1; //区间长度
    int k = log(len) / log(2); //由2^k <= len 得出符合条件的最大的k
    return max(f[l][k], f[r - (1 << k) + 1][k]);
}

int main()
{
    scanf("%d",&n);
    for(int i = 1; i <= n; i++)
        scanf("%d", &w[i]);
    
    init(); //初始化
    scanf("%d",&m);
    while(m--)
    {
        int l, r;
        scanf("%d %d",&l, &r);
        printf("%d\n", query(l, r));
    }
    return 0;
}

二、题目练习

2.1 ST表练习

2.1.1 区间最大值——板子题

题目

题目链接:1270. 数列区间最大值 - AcWing题库

思路

板子题,不再说明

代码模板

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>

using namespace std;

const int N = 1e5 + 10;
const int M = 18;

int n, m;
int f[N][M], w[N];

void init()
{
    for(int j = 0; j < M; j++)
    {
        for(int i = 1; i + (1 << j) - 1 <= n; i++)
        {
            if(!j)
                f[i][j] = w[i];
            else
                f[i][j] = max(f[i][j - 1], f[i + (1 <<(j - 1))][j - 1]);
        }
    }
}

int query(int l, int r)
{
    int len = r - l + 1;
    int k = log(len) / log(2);
    return max(f[l][k], f[r - (1 << k) + 1][k]);
}

int main()
{
    scanf("%d %d", &n, &m);
    for(int i = 1; i <= n; i++)
        scanf("%d", &w[i]);
    init();
    while(m--)
    {
        int l, r;
        scanf("%d %d", &l, &r);
        printf("%d\n", query(l, r));
    }
	return 0;
}

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值