究竟如何彻底关闭 Windows Defender?

windows11彻底关闭Microsoft Defender的3种方法

Microsoft Defender Antivirus 是 Microsoft Windows 11 操作系统的默认防病毒解决方案。默认情况下它处于打开的状态。大多数第三方的杀毒软件都可以识别,并代替它。

但是大多数情况下,我们总是有各种理由需要关闭它,例如 Windows Defender Antivirus 导致资源使用率高或系统出现其他问题。

方法一:启用或禁用 Windows Defender 的实时保护

可以通过设置打开或者关闭某些模块(例如实时保护)的选项

第一步,右键点击开始菜单--设置 或者 按住 WIN + I (大写的i)快捷键打开

点击隐私和安全性,然后选择windows安全中心

第二步,打开--保护区域下的病毒和威胁防护

第三步,选择病毒和威胁保护设置--管理设置。

关闭实时保护,云提供的保护,自动提交样本,篡改防护,全部关闭

关闭后状态

注意:页面会提示您暂时关闭。

方法二:使用组策略编辑器禁用 Windows Defender

使用组策略编辑器永久禁用 Windows Defender 防病毒。

注意:在进行更改之前,必须禁用 Windows 安全中心的篡改保护。

否则,Windows 安全中心可能会再次打开 Windows Defender 防病毒。

打开组策略---点击开始菜单--输入 gpedit.msc

或者按WIN + R ,输入 gpedit.msc

找到计算机配置>管理模板>Windows 组件>关闭Microsoft Defender 防病毒

  • 双击关闭 Microsoft Defender 防病毒策略。
  • 选择已启用,点确定

然后,重新启动Windows 11。

重新启动Windows11后,病毒和威胁防护将关闭。

方法三:使用小工具彻底关闭Windows Defender

Defender Control 是一个绿色的小工具,无需安装直接运行。可以一键关闭Windows Defender,支持多语言,支持中文。

注意:该工具运行时,可能会被Windows Defender,所以运行前,先需要执行方法一,关闭实时保护后再运行该工具,彻底关闭Windows Defender

点击停用 Windows Defender(D)。彻底停用Defender。

 

Defender_Control_v2.0.exe

https://beiyue.lanzoui.com/iXosru4edne

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值