[考研】图

一、图的基本概念

图(Graph)是由顶点的有穷非空集合V ( G ) 和顶点之间边的集合E ( G )组成,通常表示为: G = ( V , E ) ,其中,G 表示个图,V是图G中顶点的集合,E 是图G中边的集合。若V = { v 1 , v 2 , . . . , v n } ,则用∣ V ∣ 表示图G 中顶点的个数,也称图G 的阶,E = { ( u , v ) ∣ u ∈ V , v ∈ V } ,用∣ E ∣ 表示图G 中边的条数。

注意:线性表可以是空表,树可以是空树,但图不可以是空图。就是说,图中不能一个顶点也没有,图的顶点集V一定非空,但边集E可以为空,此时图中只有顶点而没有边。

以下内容只整理了很重要的点的概念,其余简单的不在此描述。

1、有向图

2、无向图

3、简单图:

一个图G若满足:①不存在重复边;②不存在顶点到自身的边,则称图G 为简单图。上图中G 1 和G 2 均为简单图。数据结构中仅讨论简单图。

4、完全无向图、完全有向图:

5、稀疏图:

e < nlogn 时就是稀疏图。

6、生成子图:

生成子图包含全部的顶点,但是只包含一部分边(也有可能是全部的边)。

7、顶点的度、入度、出度

有向图中,所有顶点的度=入度+出度

无向图中,所有顶点的度=边数的2倍

8、路径

图中连接两个顶点之间所经过的顶点序列,若一条路径中,没有重复相同的顶点,则称该路径为简单路径。

9、回路:

若第一个顶点和最后一个顶点相同的路径称为回路。在一个回路中若除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路

10、连通图和连通分量:

无向图中,若从顶点v 到顶点w有路径存在,则称v 和w 是连通的。若图G中任意两个顶点都是连通的,则称图G为连通图,否则称为非连通图

无向图中的极大连通子图称为连通分量。若一个图有n 个顶点,并且边数小于n − 1,则此图必是非连通图。如下图(a)所示, 图G 4 有3个连通分量,如图(b)所示。

极大连通子图是无向图的连通分量,极大即要求该连通子图包含其所有的边;

极小连通子图是既要保持图连通又要使得边数最少的子图。

11、极大连通子图、极小连通子图

极大连通子图

1.连通图只有一个 极大连通子图就是它本身。 (是唯一的)
2.非连通图有多个极大连通子图。(非连通图的极大连通子图叫做连通分量,每个分量都是一个连通
3.称为极大是因为如果此时加入任何一个不在图的点集中的点都会导致它不再连通下图为非连通图,图中有两个极大连通子图 (连通分量)。

极小连通子图:

1.一个连通图的生成树是该连通图顶点集确定的极小连通子图。 (同一个连通图可以有不同的生成树,所以生成树不是唯一的)
(极小连通子图只存在于连通图中)
2.用边把极小连通子图中所有节点给连起来,若有n个节点,则有n-1条边。如下图生成树有6个节点有5条边。
3.之所以称为极小是因为此时如果删除一条边,就无法构成生成树,也就是说给极小连通子图的每个边都是不可少的。
4.如果在生成树上添加一条边,一定会构成一个环
也就是说只要能连通图的所有顶点而又不产生回路的任何子图都是它的生成树

总结来说:极大联通子图是说连通分量的;极小连通子图是说生成树的

12、强连通图和强连通分量:

有向图中,若从顶点v 到顶点w 和从顶点w 到项点v 之间都有路径,则称这两个顶点是强连通的。若图中任何一对顶点都是强连通的,则称此图为强连通图。有向图中的极大强连通子图称为有向图的强连通分量,图G 1 的强连通分量如下图所示。

13、极大强连通子图:


1.强连通图的极大强连通子图为其本身。(是唯一的)
2.非强连通图有多个极大强连通子图。(非强连通图的极大强连通子图叫做强连通分量)
极小强连通子图:不存在这个概念

注意:强连通图、强连通分量只是针对有向图而言的。一般在无向图中讨论连通性,在有向图中考虑强连通性。

14、生成树和生成森林:

连通图的生成树是包含图中全部顶点的一个极小连通子图若图中顶点数为n ,则它的生成树含有n − 1 条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。在非连通图中,连通分量的生成树构成了非连通图的生成森林。图G 2的一个生成树如下图所示。

注意:包含无向图中全部顶点的极小连通子图,只有生成树满足条件,因为砍去生成树的任一条边,图将不再连通。

(1)一颗有n个顶点的生成树有且只有n-1条边

(2)如果一个图有n个顶点和小于n-1条边,这就是非连通图

(3)如果一个图有多余 n-1条边,就一定有环

(4)有 n-1条边的图不一定是生成树

一个有n个结点的图,最少有 1 个连通分量,最多有 n 个连通分量

14、无向图的生成森林

二、图的存储结构

由于图的结构比较复杂,任意两个顶点之间都可能存在联系,因此无法以数据元素在内存中的物理位置来表示元素之间的关系,也就是说,图不可能用简单的顺序存储结构来表示。而多重链表的方式,要么会造成很多存储单元的浪费,要么又带来操作的不便。因此,对于图来说,如何对它实现物理存储是个难题,接下来我们介绍五种不同的存储结构。

一、邻接矩阵

图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。
设图G GG有n nn个顶点,则邻接矩阵A 是一个n ∗ n 的方阵,定义为:

下面是一个无向图和他的邻接矩阵:

可以看出:

1、无向图的邻接矩阵一定是一个对称矩阵(即从矩阵的左上角到右下角的主对角线为轴,右上角的元与左下角相对应的元全都是相等的)。 因此,在实际存储邻接矩阵时只需存储上(或下)三角矩阵的元素。
2、对于无向图,邻接矩阵的第i 行(或第i 列)非零元素(或非∞元素)的个数正好是第i 个顶点的度T D ( v i ) 。比如顶点v 1 的度就是1 + 0 + 1 + 0 = 2
3、求顶点v i 的所有邻接点就是将矩阵中第i行元素扫描一遍, A [ i ] [ j ] 为 1就是邻接点。

下面是有向图和它的邻接矩阵:

对于以上有向图和无向图的描述,可以定义出邻接矩阵的存储结构:

#define MaxVertexNum 100	//顶点数目的最大值
typedef char VertexType;	//顶点的数据类型
typedef int EdgeType;	//带权图中边上权值的数据类型
typedef struct{
	VertexType Vex[MaxVertexNum];	//顶点表
	EdgeType Edge[MaxVertexNum][MaxVertexNum];	//邻接矩阵,边表
	int vexnum, arcnum;	//图的当前顶点数和弧树
}MGraph;

二、邻接表

当一个图为稀疏图时(边数相对顶点较少),使用邻接矩阵法显然要浪费大量的存储空间,如下图所示:

而图的邻接表法结合了顺序存储和链式存储方法,大大减少了这种不必要的浪费。
所谓邻接表,是指对图G 中的每个顶点v i 建立一个单链表,第i 个单链表中的结点表示依附于顶点v i 的边(对于有向图则是以顶点v i 为尾的弧),这个单链表就称为顶点v i 的边表(对于有向图则称为出边表)。边表的头指针和顶点的数据信息采用顺序存储(称为顶点表),所以在邻接表中存在两种结点:顶点表结点和边表结点,如下图所示。

邻接表的顺序可以任意,因此邻接表不只有一种:

图的邻接表存储结构如下:

#define MAXVEX 100	//图中顶点数目的最大值
type char VertexType;	//顶点类型应由用户定义
typedef int EdgeType;	//边上的权值类型应由用户定义
/*边表结点*/
typedef struct EdgeNode{
	int adjvex;	//该弧所指向的顶点的下标或者位置
	EdgeType weight;	//权值,对于非网图可以不需要
	struct EdgeNode *next;	//指向下一个邻接点
}EdgeNode;

/*顶点表结点*/
typedef struct VertexNode{
	Vertex data;	//顶点域,存储顶点信息
	EdgeNode *firstedge	//边表头指针
}VertexNode, AdjList[MAXVEX];

/*邻接表*/
typedef struct{
	AdjList adjList;
	int numVertexes, numEdges;	//图中当前顶点数和边数
}

图的邻接表存储方法有以下特点:

1、若G为无向图,所需要存储空间是    O(|V| + 2|E|)

2、若G为有向图,所需要存储空间是    O(|V| + |E|)

3、对于稀疏图,采用邻接表表示方法可以极大的节省空间

4、在邻接表中,给定一个顶点可以很容易的找出它的所有邻边,因为只需要读取它的邻接表。在邻接矩阵中则比较麻烦,因为相同的操作,他这里需要扫描一行,花费时间为O(n)。

三、十字链表(有向图)

十字链表是有向图的一种链式存储结构。
对于有向图来说,邻接表是有缺陷的。关心了出度问题,想了解入度就必须要遍历整个图才能知道,反之,逆邻接表解决了入度却不了解出度的情况。有没有可能把邻接表与逆邻接表结合起来呢?答案是肯定的,就是把它们整合在一起。这就是我们现在要介绍的有向图的一种存储方法:十字链表(Orthogonal List)。我们重新定义顶点表结点结构如下表所示:

简单来说就是:

出边表:连的是所有起点相同的

入边表:连的是所有终点相同的

实现代码如下:

四、邻接多重表(无向图)

邻接多重表是无向图的另一种链式存储结构。
在邻接表中,容易求得顶点和边的各种信息,但在邻接表中求两个顶点之间是否存在边而对边执行删除等操作时,需要分别在两个顶点的边表中遍历,效率较低。比如下图中,若要删除左图的( V 0 , V 2 )  这条边,需要对邻接表结构中右边表的阴影两个结点进行删除操作,显然这是比较烦琐的。

重新定义的边表结点结构如下表所示。

其中ivex和jvex是与某条边依附的两个顶点在顶点表中下标。ilink 指向依附顶点ivex的下一条边,jlink 指向依附顶点jvex的下一条边。这就是邻接多重表结构。

每个顶点也用一一个结点表示,它由如下所示的两个域组成。

其中,data 域存储该顶点的相关信息,firstedge 域指示第一条依附于该顶点的边。

我们来看结构示意图的绘制过程,理解了它是如何连线的,也就理解邻接多重表构造原理了。如下图7所示,左图告诉我们它有4个顶点和5条边,显然,我们就应该先将4个顶点和5条边的边表结点画出来。

王道书上讲解:

(十字链表和邻接多重表不需要考到代码,只需要理解它的相关概念即可)

  • 21
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tsuyt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值