我们现在做互联网产品的时候,都有这么一个需求:记录用户在网站或者App上的点击行为数据,来分析用户行为。这里的数据一般包括用户ID、行为类型(例如浏览、登录、下单等)、行为发生的时间戳:
UserID, Type, TimeStamp
复制代码
我之前做过的一个物联网项目的数据存取需求,和这个很相似。我们需要周期性地统计近万台设备的实时状态,包括设备ID、压力、温度、湿度,以及对应的时间戳:
DeviceID, Pressure, Temperature, Humidity, TimeStamp
复制代码
这些与发生时间相关的一组数据,就是时间序列数据。这些数据的特点是没有严格的关系模型,记录的信息可以表示成键和值的关系(例如,一个设备ID对应一条记录),所以,并不需要专门用关系型数据库(例如MySQL)来保存。而Redis的键值数据模型,正好可以满足这里的数据存取需求。Redis基于自身数据结构以及扩展模块,提供了两种解决方案。
这节课,我就以物联网场景中统计设备状态指标值为例,和你聊聊不同解决方案的做法和优缺点。
俗话说,“知己知彼,百战百胜”,我们就先从时间序列数据的读写特点开始,看看到底应该采用什么样的数据类型来保存吧。
时间序列数据的读写特点
在实际应用中,时间序列数据通常是持续高并发写入的,例如,需要连续记录数万个设备的实时状态值。同时,时间序列数据的写入主要就是插入新数据,而不是更新一个已存在的数据,也就是说,一个时间序列数据被记录后通常就不会变了,因为它就代表了一个设备在某个时刻的状态值(例如,一个设备在某个时刻的温度测量值,一旦记录下来,这个值本身就不会再变了)。
所以,这种数据的写入特点很简单,就是插入数据快,这就要求我们选择的数据类型,在进行数据插入时,复杂度要低,尽量不要阻塞。看到这儿,你可能第一时间会想到用Redis的String、Hash类型来保存,因为它们的插入复杂度都是O(1),是个不错的选择。但是,我在第11讲中说过,String类型在记录小数据时(例如刚才例子中的设备温度值),元数据的内存开销比较大,不太适合保存大量数据。
那我们再看看,时间序列数据的“读”操作有什么特点。
我们在查询时间序列数据时,既有对单条记录的查询(例如查询某个设备在某一个时刻的运行状态信息,对应的就是这个设备的一条记录),也有对某个时间范围内的数据的查询(例如每天早上8点到10点的所有设备的状态信息)。
除此之外,还有一些更复杂的查询,比如对某个时间范围内的数据做聚合计算。这里的聚合计算,就是对符合查询条件的所有数据做计算,包括计算均值、最大/最小值、求和等。例如,我们要计算某个时间段内的设备压力的最大值,来判断是否有故障发生。
那用一个词概括时间序列数据的“读”,就是查询模式多。
弄清楚了时间序列数据的读写特点,接下来我们就看看如何在Redis中保存这些数据。我们来分析下:针对时间序列数据的“写要快”,Redis的高性能写特性直接就可以满足了;而针对“查询模式多”,也就是要支持单点查询、范围查询和聚合计算,Redis提供了保存时间序列数据的两种方案,分别可以基于Hash和Sorted Set实现,以及基于RedisTimeSeries模块实现。
接下来,我们先学习下第一种方案。
基于Hash和Sorted Set保存时间序列数据
Hash和Sorted Set组合的方式有一个明显的好处:它们是Redis内在的数据类型,代码成熟和性能稳定。所以,基于这两个数据类型保存时间序列数据,系统稳定性是可以预期的。
不过,在前面学习的场景中,我们都是使用一个数据类型来存取数据,那么,为什么保存时间序列数据,要同时使用这两种类型?这是我们要回答的第一个问题。
关于Hash类型,我们都知道,它有一个特点是,可以实现对单键的快速查询。这