机器学习中的线性回归、非线性回归、多项式回归、多重共线性原理与sklearn实现(Python,sklearn,numpy)

        关于机器学习中,在我学习的过程中,我发现一些问题真的是十分的绕。给了我们很多名词,线性回归、非线性回归、多项式回归、多重共线性等等...那么这些名词内部到底具有什么含义

?平时应用在什么场景?大家可能都觉得比较抽象。因此我特别搜索了一些文章。自己进行了一些总结,以便更好的理解。

共线性分析icon-default.png?t=O83Ahttps://zhuanlan.zhihu.com/p/96193669

共线性分析

        这里有一串矩阵分析哈,由于我的线性代数知识不是很好,因此我这里不深入讲,感兴趣的可以点击上面的卡片看知乎的原文章

        简而言之,共线性分析其实是线性回归中一般会出现的情况。至于线性回归是咋样的呢?我给大家找一个简单的例子:在咱们真实的机器学习中,咱们的特征矩阵通常都是m * n的二维矩阵,m是指m个数据,n是指一个数据中有n个特征。那么最终的标签值就是标签和特征的矩阵相乘。都是一次乘法,X并不存在高次的

        那么共线性的影响也很简单:若n个特征之间存在高度相关性,那么我们使用线性回归得到的效果就会非常差。那么如何解决这种共线性问题呢?目前常用的就是以下几种解决方案:

  1. 相关系数矩阵:计算特征之间的相关系数,高相关系数可能表明共线性的存在
  2. 方差膨胀因子(VIF):VIF值大于5或10表面存在严重的共线性问题。
  3. 主成分分析:降维算法
  4. 岭回归与L2正则化:比较经典,但是效果貌似普遍很差。起到了提供思路的作用。

代码如下:

import numpy as np
import pandas as pd
from sklearn.datasets import make_regression
from sklearn.linear_model import Ridge
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant

# 生成一个简单的回归数据集
X, y = make_regression(n_samples=100, n_features=2, n_informative=2, noise=0.1, random_state=42)

# 将数据集转换为DataFrame
df = pd.DataFrame(X, columns=['Feature1', 'Feature2'])
df['Target'] = y

# 计算相关系数矩阵
correlation_matrix = df.corr()
print("相关系数矩阵:")
print(correlation_matrix)

# 计算VIF值
vif_data = pd.DataFrame()
vif_data["Feature"] = df.columns[:-1]
vif_data["VIF"] = [variance_inflation_factor(df.values, i) for i in range(df.shape[1]-1)]

print("\nVIF值:")
print(vif_data)

# 主成分分析
scaler = StandardScaler()
X_scaled = scaler.fit_transform(df.iloc[:, :-1])
pca = PCA(n_components=1)
X_pca = pca.fit_transform(X_scaled)
print("\n主成分分析结果:")
print(pd.DataFrame(X_pca, columns=['Principal Component']))

# 岭回归
ridge = Ridge(alpha=1.0)
ridge.fit(df.iloc[:, :-1], df['Target'])
print("\n岭回归系数:")
print(ridge.coef_)

# 预测
y_pred = ridge.predict(df.iloc[:, :-1])
print("预测结果:")
print(y_pred)

非线性分析

        非线性分析也很简单,即我们的标签与变量之间的特征不能再用简单的一次关系来表示。比如果,标签与某一个变量存在指数关系,或者二次函数关系,那么我们就不能使用线性回归来进行判断。当然,随机森林回归这种分析,也是属于非线性分析

        而多项式分析是非线性分析的一种特例。其基本形式与线性分析的模式差不态度,唯一的区别就是允许公式中存在高次项。如下图中右图,就是最明显的多项式分析。

接下来给大家提供一个简单的案例:

这是最简单的案例:

from sklearn.preprocessing import PolynomialFeatures
import numpy as np
X = np.arange(6).reshape(3, 2)
poly = PolynomialFeatures(degree=2)
poly.fit_transform(X)

        这个是稍微复杂点的。

import numpy as np
import pandas as pd
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
import matplotlib.pyplot as plt

# 生成一个简单的回归数据集
X, y = make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)

# 将数据集转换为DataFrame
df = pd.DataFrame(X, columns=['Feature'])
df['Target'] = y

# 创建一个多项式回归模型,这里使用2阶多项式
poly_degree = 2
polyreg = make_pipeline(PolynomialFeatures(poly_degree), LinearRegression())

# 拟合多项式回归模型
polyreg.fit(df['Feature'].values.reshape(-1, 1), df['Target'])

# 生成预测
X_poly = PolynomialFeatures(poly_degree).fit_transform(df['Feature'].values.reshape(-1, 1))
y_pred = polyreg.predict(X_poly)

# 绘制原始数据和多项式回归拟合曲线
plt.scatter(df['Feature'], df['Target'], color='blue', label='Data')
plt.plot(df['Feature'], y_pred, color='red', label='Polynomial Regression')
plt.title('Polynomial Regression')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.legend()
plt.show()

# 打印模型系数
print("模型系数:")
print("截距:", polyreg.named_steps['linearregression'].intercept_)
print("系数:", polyreg.named_steps['linearregression'].coef_)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香蕉也是布拉拉

随缘打赏不强求~ 谢谢大家

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值