问题描述
Description
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa+ pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
Input
输入描述:
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输入样例:
5
5 3 8 2 9
Output
输出描述:
输出用这些数构造Huffman树的总费用。
输出样例:
59
问题分析
根据题目描述,本题可以用优先队列解决哈夫曼编码问题
具体操作题目已给出
完整代码
import java.util.PriorityQueue;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
int n = scanner.nextInt(); // 读取输入的数列长度
int[] weights = new int[n]; // 创建数组来存储权重
// 读取权重值并放入数组
for (int i = 0; i < n; i++) {
weights[i] = scanner.nextInt();
}
// 创建一个最小堆来存储权重值,以便后面构建 Huffman 树
PriorityQueue<Integer> minHeap = new PriorityQueue<>();
for (int weight : weights) {
minHeap.add(weight);
}
int totalCost = 0;
// 构建 Huffman 树
while (minHeap.size() > 1) {
// 从最小堆中找到两个最小的权重值
int min1 = minHeap.poll();
int min2 = minHeap.poll();
// 合并它们的权重,表示为新的权重
int mergedWeight = min1 + min2;
// 累加合并后的权重,表示总费用
totalCost += mergedWeight;
// 将合并后的权重放回最小堆,以便继续构建 Huffman 树
minHeap.add(mergedWeight);
}
// 输出总费用
System.out.println(totalCost);
}
}
}