线段树
参考大神的博客写的:
大神详解(写的真的很好)
tree[i].l和tree[i].r
分别表示这个点代表的线段的左右下标,tree[i].sum
表示这个节点表示的线段和。
一颗二叉树,她的左儿子和右儿子编号分别是她*2
和她*2+1
,
建树
inline void build(int i,int l,int r){//递归建树
tree[i].l=l;tree[i].r=r;
if(l==r){//如果这个节点是叶子节点
tree[i].sum=input[l];
return ;
}
int mid=(l+r)>>1;
build(i*2,l,mid);//分别构造左子树和右子树
build(i*2+1,mid+1,r);
tree[i].sum=tree[i*2].sum+tree[i*2+1].sum;//刚才我们发现的性质return ;
}
一、简单(无pushdown)的线段树
1、单点修改,区间查询
我们总结一下,线段树的查询方法:
- 如果这个区间被完全包括在目标区间里面,直接返回这个区间的值
- 如果这个区间的左儿子和目标区间有交集,那么搜索左儿子
- 如果这个区间的右儿子和目标区间有交集,那么搜索右儿子
区间查询(求区间的和)
inline int search(int i,int l,int r){
if(tree[i].l>=l && tree[i].r<=r)//如果这个区间被完全包括在目标区间里面,直接返回这个区间的值
return tree[i].sum;
if(tree[i].r<l || tree[i].l>r) return 0;//如果这个区间和目标区间毫不相干,返回0
int s=0;
if(tree[i*2].r>=l) s+=search(i*2,l,r);//如果这个区间的左儿子和目标区间又交集,那么搜索左儿子
if(tree[i*2+1].l<=r) s+=search(i*2+1,l,r);//如果这个区间的右儿子和目标区间又交集,那么搜索右儿子
return s;
}
单点修改
然我们怎么修改这个区间的单点,其实这个相对简单很多,你要把区间的第dis位加上k。
那么你从根节点开始,看这个dis是在左儿子还是在右儿子,在哪往哪跑,
然后返回的时候,还是按照tree[i].sum=tree[i*2].sum+tree[i*2+1].sum
的原则,更新所有路过的点
inline void add(int i,int dis,int k){
if(tree[i].l==tree[i].r){//如果是叶子节点,那么说明找到了
tree[i].sum+=k;
return ;
}
if(dis<=tree[i*2].r) add(i*2,dis,k);//在哪往哪跑
else add(i*2+1,dis,k);
tree[i].sum=tree[i*2].sum+tree[i*2+1].sum;//返回更新
return ;
}
书写规范
#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + 7;
int n, a[N], opnum;
int op, pos, L, R, k;
struct segment_tree {
struct tree {
int l, r;
int lazy;
int sum;
}tr[N * 4];
void build(int i, int l, int r) { //创建一棵树,i是节点,l时左边界,r是右边界
tr[i].l = l, tr[i].r = r; // 该结点的区间[l , r];
if (l == r) { //当前为叶节点
tr[i].sum = a[l]; //叶节点存储的是单个数字且是a数组中的数字
return;
}
int mid = (l + r) >> 1;
build(i * 2, l, mid); // 递归构造左子树
build(i * 2 + 1, mid + 1, r); //递归构造右子树
tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum; //更新结点sum的值,是从下往上确定每个节点的sum的
}
inline void add(int i, int dis, int k) {//单点修改,i是节点,dis是修改的位置,k是增加或减少的值
if (tr[i].l == tr[i].r) { //判断到叶节点的时候说明找到了该数,该数字 + k;
tr[i].sum += k;
return;
}
if (dis <= tr[i * 2].r) add(i * 2, dis, k); //dis在哪里就往哪边靠
else add(i * 2 + 1, dis, k);
tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum; //从下往上重新确定路径上的节点的sum值
return;
}
inline int serch(int i, int l, int r) { //区间查询,i是节点,要求[l, r]内值的和
if (tr[i].l >= l && tr[i].r <= r) { //当节点的整个区间都被包含时就返回sum
return tr[i].sum;
}
else if (tr[i].l > r || tr[i].r < l) return 0; // 当节点区间和所求的区间没有任何关系时返回0
int s = 0;
if (tr[i * 2 + 1].l <= r) s += serch(i * 2 + 1, l, r); // 当节点的右区间有重合时,就递归往又找,同时累加s
if (tr[i * 2].r >= l) s += serch(i * 2, l, r); //当节点的左区间有重合时,同理操作
return s;
}
}ST;
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
cin >> n >> opnum;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
ST.build(1, 1, n); // 建树
for (int i = 1; i <= opnum; i++) {
cin >> op;
if (op == 1) {
cin >> pos >> k;
ST.add(1, pos, k); // 单点修改
}
else {
cin >> L >> R;
int re = ST.serch(1, L, R); // 区间查询
cout << re << '\n';
}