时间序列分析——基于R(第2版)—第2章习题答案

文章通过对不同时间序列数据(如火山CO2排放、降雨量、销售量、犯罪率和死亡率等)的时序图绘制和自相关系数计算,分析了各序列的平稳性和纯随机性。大部分序列显示出非平稳特性,有些具有周期性或趋势。通过一阶差分,某些非平稳序列变得平稳,揭示了数据内在的动态模式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.2 1975-1980年夏威夷岛莫那罗亚火山每月释放的CO2数据

  1. 绘制时序图,并判断该序列是否平稳
  2. 计算该序列的样本自相关系数
  3. 绘制自相关图,并解释该图形
x=ts(E2_2$co2,start = 1975)
plot(x)#绘制时序图
#周期性,逐年递增,非平稳序列
print(acf(E2_2$co2,lag=24))#计算自相关系数
acf(E2_2$co2)#自相关图

自相关系数长期位于0轴的一边,这是具有单调趋势序列的典型特征;同时呈现出正弦波动规律,这是具有周期性变化规律的非平稳序列的特征。以上与时序图显示的特征吻合
 

2.3 1945-1950年费城月度降雨量数据

  1. 计算该序列的样本自相关系数
  2. 判断该序列的平稳性
  3. 判断该序列的纯随机性
print(acf(E2_3$rain,lag=24))#计算自相关系数
q2=ts(E2_3$rain,start=1945)
plot(q2)#绘制时序图
acf(q2)
#围绕在100附近随机波动,没有明显趋势或周期,基本可视为平稳序列。进一步利用自相关图辅助识别
#自相关系数一直比较小,控制在2倍标准差内,可认为该序列自始至终都在0轴附近波动。
#这是随机性很强的平稳序列具有的自相关图的特征
for(i in 1:3) print(Box.test(q2,lag=6*i))
#根据检验结果,延迟18阶P值<显著性水平0.5,拒绝序列纯随机的原假设,因而可以认为该序列属于非白噪声序列

2.5 某公司在2000-2003年间每月的销售量

  1. 绘制该序列的时序图及样本自相关图
  2. 判断该序列的平稳性
  3. 判断该序列的纯随机性
q5=ts(E2_5$x)
plot(q5)#绘制时序图
#周期性
acf(q5,lag=60)#自相关图
#该序列显示周期序列特征,所以识别为非平稳序列
for(i in 1:2) print(Box.test(q5,lag=3*i))#纯随机性检验
#p值<0.05,属于非白噪声序列

2.6 1969年1月至1973年9月在芝加哥海德公园内每28天发生的抢包案件数量

  1. 判断该序列的平稳性及纯随机性
q6=ts(E2_6$x)
plot(q6)
acf(E2_6$x)
#自相关图具有三角对称性,非平稳序列
for(i in 1:2) print(Box.test(q5,lag=6*i))
#不是纯随机序列,即非白噪声序列

2.7 1915-2004年澳大利亚每年与枪支有关的凶杀案死亡率(每10万人)

  1. 绘制该序列的时序图,直观考察该序列的平稳特征
  2. 绘制自相关图,分析该序列的平稳性
  3. 如果是平稳序列,分析该序列的纯随机性;如果是非平稳序列,则分析该序列一阶差分后的平稳性
q7=ts(E2_7$mortality,start = 1915)
plot(q7)
acf(q7)
#时序图和自相关图都显示典型的趋势序列特征,所以图识别为非平稳序列
plot(diff(q7))
acf(diff(q7))
#Box.test(q7)
#一阶差分后平稳

2.8 1860-1955年密歇根湖每月平均水位的最高值序列

  1. 绘制该序列的时序图,直观考察该序列的平稳特征
  2. 绘制自相关图,分析该序列的平稳性
  3. 如果是平稳序列,分析该序列的纯随机性;如果是非平稳序列,则分析该序列一阶差分后的平稳性
q8=ts(E2_8$wl,start=1860)
plot(q8)
acf(q8,lag=20)
#时序图和自相关图都显示典型的趋势序列特征
plot(diff(q8))
acf(diff(q8))
#一阶差分后平稳


 

### R语言时间序列分析课后习题与练习资料 对于希望深入学习并实践R语言中的时间序列分析的学生和研究人员来说,存在多种宝贵的资源可以利用。 #### 资源一:基于R的时间序列分析教材配套数据 王燕编著的《时间序列分析——基于R》第二提供了一个GitHub仓库,其中包含了从第二到第七的所有课后习题所需的数据文件[^1]。这些数据不仅有助于巩固理论知识的理解,还能够帮助使用者熟练掌握如何运用R软件处理实际问题。每一节的数据集都被精心设计以匹配书中所讨论的主题和技术要点。 #### 资源二:详尽解答指南 另一份重要的参考资料来自《时间序列分析及应用(R语言)(原书第2)》,此书籍同样配备有一个在线存储库,内含完整的课后习题解决方案[^2]。这份文档覆盖了广泛的内容领域,包括但不限于趋势建模、ARIMA模型构建、季节调整以及其他高级话题如谱密度估计等。通过研究官方给出的标准解法,学生可以获得更清晰的学习路径,并能验证自己解决问题的方法是否正确有效。 ```r # 示例代码展示如何加载并探索其中一个典型的时间序列数据集 library(forecast) data("AirPassengers") # 加载内置航空乘客数量月度数据集 plot(AirPassengers) # 绘制原始时间序列图象 tsdisplay(AirPassengers)# 显示ACF/PACF图表辅助模型选择 ``` 上述两处提到的资源共同构成了一个全面而系统的自学平台,使得任何有兴趣深入了解时间序列分析的人都能找到适合自己的起点和发展方向。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值