(2021)n个村庄各自相通,要在某一处村庄里修供水站,确定最优位置使供水站到所有村庄的路程之和最少
审题:
本题明显考察的最短路径问题,常用有dijkstra和floyed算法,用哪种?
答:根据题意供水站可以在任意一个村庄中,属于任意两点最短路径,应选用floyed算法。
- 借用三个辅助向量组,一次又一次更新各顶点的第n条最短路径
- flag[i]:=1表示已找到最短路径
dist[i]:从起点到Vi的最短路径长度
path[i]:从起点到Vi的最短路径 - 设总结点数为n,从起点到各顶点的第一条最短路径dist[u],u为最短路径的终点
dist[u]=min{dist[w]&&flag[w]=0} , w=1,2……n-1 - 找到目前最短路径后更新path[u],path最好包含两个东西
+ pi[i] :path[u].pi[end]即最短路径的终点
+ end : 这个路径经过的点数-1
- flag[i]:=1表示已找到最短路径
/*必要的初始化 */
for(i=0;i<n;i++)
{
flag[i]=0;
dist[i]=G.A[v0][i];//vo到i的权值
path[i].pi[0]=v0
path[i].end=0;
}
/*第一条最短路径*/
m=MAX;//MAX表示目前机器表示的最大值,即无路径长度为∞
for(w=0;w<=n-1;w++)
{
if(dist[w]<m&&falg[w]==0)
{
u=w;//u为最短路径的终点
m=dist[w];
}
}
if(m==MAX)break;//跳出while循环
flag[u]=1;
path[u].end++;//现在是从起点到u,
//第一条最短路径:path[u].pi[0]=起点,path[u].pi[1]=u
path[u].pi[end]=u;
- 查找最短路径:
已知现在path[u]是最短路径
以vw为终点,试图从起点——>Vu——>Vw
若dist[w] > dist[u]+<Vu,Vw>之间的权值,则从起点——>Vu——>Vw更近
令dist[w] = dist[u]+<Vu,Vw>之间的权值- 找到当前的最短路径后更新path[w]
/*试图插入中间结点并寻找最短路径*/
for(w=0;w<=n-1;w++)
{
if(flag[w]==0&&dist[w]>dist[u]+G.A[u][w])
{
dist[w]=dist[u]+G.A[u][w];
path[w]=path[u];
}
}
/*完整算法描述*/
**********************************************************
/*path结构体的定义*/
typedef struct
{
int pi[n];
int end;
}pathtype;;
pathtype path[n];
int dist[n];
//此处图以邻接矩阵G.A[i][j]形式给出
void Dijkstra(mgraph G,int dist[],pathtype path[],int v0,int n)
{
int i,count,flag[n],m,u,w;//count为计数器,m表示最初的权值,没赋值之前都是MAX,即∞
//初始化
for(i=0;i<n;i++)
{
flag[i]=0;
dist[i]=G.A[v0][i];//vo到i的权值
path[i].pi[0]=v0
path[i].end=0;
}
flag[v0]=1;
count=1;
/*因为除了v0外共有n-1个点,
所以寻找最短路径的两个过程应放在while(count<=n-1)中*/
while(count<=n-1)
{
m=MAX;//MAX表示目前机器表示的最大值,即无路径长度为∞
for(w=0;w<=n-1;w++)
{
if(dist[w]<m&&falg[w]==0)
{
u=w;//u为最短路径的终点
m=dist[w];
}
}
if(m==MAX)break;//跳出while循环
flag[u]=1;
path[u].end++;//现在是从起点到u,
//第一条最短路径:path[u].pi[0]=起点,path[u].pi[1]=u
path[u].pi[end]=u;
for(w=0;w<=n-1;w++)
{
if(flag[w]==0&&dist[w]>dist[u]+G.A[u][w])
{
dist[w]=dist[u]+G.A[u][w];
path[w]=path[u];
}
}
count++;
}
}
-
对比:prim算法
- prim算法常用来找最小生成树。最小生成树是一个图的边的权值之和最小的生成树
- prim的思想:从一个点开始,以自己为中心寻找离它最近的一个点,从而扩大"身体"(现在身体里有两个点),以"身体"为中心找最近的点,继续扩大身体……所以最小生成树一般不规则,可能不唯一
-
floyed算法
各点均可作为起点,找任意两顶点间最短路径
- 实质用n次djisktra算法也可以,但floyed更简便
- 用矩阵来存储距离,任意两顶点间距离D[i][j]
/*必要的初始化距离矩阵*/
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
if (graph[i][j] == 0 && i != j) {
dist[i][j] = MAX; // 如果没有直接路径且不是同一个顶点,则设置为MAX
} else {
dist[i][j] = graph[i][j]; // 否则设置为实际的边权重
}
}
}
- 尝试从Vi——>Vk——>Vj
注意:此处的“试探”,k可以是0-n,表示经历第k个结点
当 k = 0 时,只考虑直接相连的顶点对。
当 k = 1 时,考虑经过第一个顶点的所有路径,第一个顶点可以是图中任意点。
当 k = 2 时,考虑经过第二个顶点的所有路径,第二个顶点可以是图中任意点。
……
/*更新距离矩阵*/
for (int k = 0; k < V; k++) {
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
if (dist[i][k] != MAX && dist[k][j] != MAX && dist[i][k] + dist[k][j] < dist[i][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
- 还有一个问题,当结点未知为n时,注意动态分配空间
/*分配空间*/
//**dist指指向二维数组(矩阵)的指针
int **dist = (int **)malloc(n * sizeof(int *));
for (int i = 0; i < n; i++) {
dist[i] = (int *)malloc(n * sizeof(int));
}
/*完整代码*/
**************************************************
#include <stdio.h>
#include <limits.h> // 包含INT_MAX的定义
#include <stdlib.h> // 包含malloc和free的定义
#define MAX INT_MAX // 定义一个足够大的数作为无穷大
// 打印最终的距离矩阵
void printSolution(int **dist, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dist[i][j] == MAX) {
printf("%7s", "INF");
} else {
printf("%7d", dist[i][j]);
}
}
printf("\n");
}
}
// Floyd算法计算所有顶点对之间的最短路径
void floyd(int **graph, int n) {
int **dist = (int **)malloc(n * sizeof(int *));
for (int i = 0; i < n; i++) {
dist[i] = (int *)malloc(n * sizeof(int));
}
// 初始化距离矩阵
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (graph[i][j] == 0 && i != j) {
dist[i][j] = MAX; // 如果没有直接路径且不是同一个顶点,则设置为MAX
} else {
dist[i][j] = graph[i][j]; // 否则设置为实际的边权重
}
}
}
// 更新距离矩阵
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dist[i][k] != MAX && dist[k][j] != MAX && dist[i][k] + dist[k][j] < dist[i][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
}
// 打印最终的距离矩阵
printSolution(dist, n);
// 释放动态分配的内存
for (int i = 0; i < n; i++) {
free(dist[i]);
}
free(dist);
}
int main() {
int n; // 顶点数量
printf("请输入顶点数量: ");
scanf("%d", &n);
// 动态分配邻接矩阵的内存
int **graph = (int **)malloc(n * sizeof(int *));
for (int i = 0; i < n; i++) {
graph[i] = (int *)malloc(n * sizeof(int));
}
// 输入图的邻接矩阵(无向图)
printf("请输入邻接矩阵:\n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%d", &graph[i][j]);
}
}
// 调用Floyd算法计算所有顶点对之间的最短路径
floyd(graph, n);
// 释放动态分配的内存
for (int i = 0; i < n; i++) {
free(graph[i]);
}
free(graph);
return 0;
}
村庄供水站选址的最短路径算法分析
1371

被折叠的 条评论
为什么被折叠?



