代码分析——最短路径Dijkstra/Floyed(附对比Prim)

村庄供水站选址的最短路径算法分析

(2021)n个村庄各自相通,要在某一处村庄里修供水站,确定最优位置使供水站到所有村庄的路程之和最少

审题:
本题明显考察的最短路径问题,常用有dijkstra和floyed算法,用哪种?
答:根据题意供水站可以在任意一个村庄中,属于任意两点最短路径,应选用floyed算法。

  1. dijkstra算法

    以起点为中心,寻找到各点(各点可以看做是独立的)的最短路径。 dijkstra的思想:
  • 借用三个辅助向量组,一次又一次更新各顶点的第n条最短路径
    • flag[i]:=1表示已找到最短路径
      dist[i]:从起点到Vi的最短路径长度
      path[i]:从起点到Vi最短路径
    • 设总结点数为n,从起点到各顶点的第一条最短路径dist[u],u为最短路径的终点
      dist[u]=min{dist[w]&&flag[w]=0} , w=1,2……n-1
    • 找到目前最短路径后更新path[u],path最好包含两个东西
      + pi[i] :path[u].pi[end]即最短路径的终点
      + end : 这个路径经过的点数-1
/*必要的初始化 */

for(i=0;i<n;i++)
{
	flag[i]=0;
	dist[i]=G.A[v0][i];//vo到i的权值
	path[i].pi[0]=v0
	path[i].end=0;
}
/*第一条最短路径*/

	m=MAX;//MAX表示目前机器表示的最大值,即无路径长度为∞
	for(w=0;w<=n-1;w++)
	{
		if(dist[w]<m&&falg[w]==0)
		{
			u=w;//u为最短路径的终点
			m=dist[w];
		}
	}
	if(m==MAX)break;//跳出while循环
	flag[u]=1;

	path[u].end++;//现在是从起点到u,
	//第一条最短路径:path[u].pi[0]=起点,path[u].pi[1]=u
	path[u].pi[end]=u;

  • 查找最短路径:
    已知现在path[u]是最短路径
    以vw为终点,试图从起点——>Vu——>Vw
    dist[w] > dist[u]+<Vu,Vw>之间的权值,则从起点——>Vu——>Vw更近
    dist[w] = dist[u]+<Vu,Vw>之间的权值
    • 找到当前的最短路径后更新path[w]
/*试图插入中间结点并寻找最短路径*/

for(w=0;w<=n-1;w++)
{
	if(flag[w]==0&&dist[w]>dist[u]+G.A[u][w])
	{
		dist[w]=dist[u]+G.A[u][w];
		path[w]=path[u];
	}
}
/*完整算法描述*/
**********************************************************
/*path结构体的定义*/
typedef struct
{
	int pi[n];
	int end;
}pathtype;;

pathtype path[n];
int dist[n];

//此处图以邻接矩阵G.A[i][j]形式给出
void Dijkstra(mgraph G,int dist[],pathtype path[],int v0,int n)
{
	int i,count,flag[n],m,u,w;//count为计数器,m表示最初的权值,没赋值之前都是MAX,即∞
	//初始化
	for(i=0;i<n;i++)
	{
	flag[i]=0;
	dist[i]=G.A[v0][i];//vo到i的权值
	path[i].pi[0]=v0
	path[i].end=0;
	}
	flag[v0]=1;
	count=1;
	
	/*因为除了v0外共有n-1个点,
	所以寻找最短路径的两个过程应放在while(count<=n-1)中*/
	while(count<=n-1)
	{
		m=MAX;//MAX表示目前机器表示的最大值,即无路径长度为∞
		for(w=0;w<=n-1;w++)
		{
			if(dist[w]<m&&falg[w]==0)
			{
				u=w;//u为最短路径的终点
				m=dist[w];
			}
		}
		if(m==MAX)break;//跳出while循环
		flag[u]=1;
	
		path[u].end++;//现在是从起点到u,
		//第一条最短路径:path[u].pi[0]=起点,path[u].pi[1]=u
		path[u].pi[end]=u;

		for(w=0;w<=n-1;w++)
		{
			if(flag[w]==0&&dist[w]>dist[u]+G.A[u][w])
			{
				dist[w]=dist[u]+G.A[u][w];
				path[w]=path[u];
			}
		}

		count++;
	}
}

  1. 对比:prim算法

    • prim算法常用来找最小生成树。最小生成树是一个图的边的权值之和最小的生成树
    • prim的思想:从一个点开始,以自己为中心寻找离它最近的一个点,从而扩大"身体"(现在身体里有两个点),以"身体"为中心找最近的点,继续扩大身体……所以最小生成树一般不规则,可能不唯一
  2. floyed算法

    各点均可作为起点,找任意两顶点间最短路径

  • 实质用n次djisktra算法也可以,但floyed更简便
  • 用矩阵来存储距离,任意两顶点间距离D[i][j]
/*必要的初始化距离矩阵*/
    for (int i = 0; i < V; i++) {
        for (int j = 0; j < V; j++) {
            if (graph[i][j] == 0 && i != j) {
                dist[i][j] = MAX; // 如果没有直接路径且不是同一个顶点,则设置为MAX
            } else {
                dist[i][j] = graph[i][j]; // 否则设置为实际的边权重
            }
        }
    }
  • 尝试从Vi——>Vk——>Vj
    注意:此处的“试探”,k可以是0-n,表示经历第k个结点
    当 k = 0 时,只考虑直接相连的顶点对。
    当 k = 1 时,考虑经过第一个顶点的所有路径,第一个顶点可以是图中任意点。
    当 k = 2 时,考虑经过第二个顶点的所有路径,第二个顶点可以是图中任意点。
    ……
/*更新距离矩阵*/

for (int k = 0; k < V; k++) {
        for (int i = 0; i < V; i++) {
            for (int j = 0; j < V; j++) {
                if (dist[i][k] != MAX && dist[k][j] != MAX && dist[i][k] + dist[k][j] < dist[i][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
  • 还有一个问题,当结点未知为n时,注意动态分配空间
/*分配空间*/
//**dist指指向二维数组(矩阵)的指针
int **dist = (int **)malloc(n * sizeof(int *));
    for (int i = 0; i < n; i++) {
        dist[i] = (int *)malloc(n * sizeof(int));
    }
/*完整代码*/
**************************************************
#include <stdio.h>
#include <limits.h> // 包含INT_MAX的定义
#include <stdlib.h> // 包含malloc和free的定义

#define MAX INT_MAX // 定义一个足够大的数作为无穷大

// 打印最终的距离矩阵
void printSolution(int **dist, int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (dist[i][j] == MAX) {
                printf("%7s", "INF");
            } else {
                printf("%7d", dist[i][j]);
            }
        }
        printf("\n");
    }
}

// Floyd算法计算所有顶点对之间的最短路径
void floyd(int **graph, int n) {
    int **dist = (int **)malloc(n * sizeof(int *));
    for (int i = 0; i < n; i++) {
        dist[i] = (int *)malloc(n * sizeof(int));
    }

    // 初始化距离矩阵
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (graph[i][j] == 0 && i != j) {
                dist[i][j] = MAX; // 如果没有直接路径且不是同一个顶点,则设置为MAX
            } else {
                dist[i][j] = graph[i][j]; // 否则设置为实际的边权重
            }
        }
    }

    // 更新距离矩阵
    for (int k = 0; k < n; k++) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (dist[i][k] != MAX && dist[k][j] != MAX && dist[i][k] + dist[k][j] < dist[i][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
    }

    // 打印最终的距离矩阵
    printSolution(dist, n);

    // 释放动态分配的内存
    for (int i = 0; i < n; i++) {
        free(dist[i]);
    }
    free(dist);
}

int main() {
    int n; // 顶点数量
    printf("请输入顶点数量: ");
    scanf("%d", &n);

    // 动态分配邻接矩阵的内存
    int **graph = (int **)malloc(n * sizeof(int *));
    for (int i = 0; i < n; i++) {
        graph[i] = (int *)malloc(n * sizeof(int));
    }

    // 输入图的邻接矩阵(无向图)
    printf("请输入邻接矩阵:\n");
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            scanf("%d", &graph[i][j]);
        }
    }

    // 调用Floyd算法计算所有顶点对之间的最短路径
    floyd(graph, n);

    // 释放动态分配的内存
    for (int i = 0; i < n; i++) {
        free(graph[i]);
    }
    free(graph);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值