网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。
目录
京东[实习]安全研发
1. 首先根据简历提问 2. 问我的一个项目完成的怎么的样了,//简历中的 3. Java基础怎么样, 4. 有没有自己动手写过一些工具 5. 有没有想过自己以后要写一下扫描器 6. sql注入的简单原理及其如何防御 7. 有没有了解过反序列化 尤其是Java方向的 8. 数据结构还记得多少 9. src主要挖掘一些什么类型的漏洞 10. 了解的MSF框架怎么样 11. 数据库主要了解的哪些,主要学的什么数据库 12. ssrf的原理及其防御 —> 这有深入
1. 根据简历提问——面试官的关注点与应对策略
扩展分析:
(1)项目真实性验证
面试官会通过技术细节追问(如架构设计、难点突破、性能指标)判断候选人是否真实参与项目。例如:
- 若简历提到"使用微服务优化系统性能",需准备回答:服务拆分粒度划分依据(DDD领域划分)、网关选型对比(Spring Cloud Gateway vs Zuul)、熔断降级策略(Hystrix线程池隔离与信号量隔离的取舍)
- 应对方法:提前绘制项目架构图,整理核心接口QPS、响应时间等数据,准备3个以上具体的技术决策案例
(2)技术深度探测
对标注"精通"的技术栈,面试官会设置陷阱问题。例如:
- 若简历写"精通Redis",可能被问及:Redis集群数据分片迁移过程、CRC16算法碰撞概率、Stream数据结构与Kafka的优劣对比
- 典型案例:某候选人因无法解释Redis事务的WATCH命令与数据库ACID差异被质疑技术水平
(3)职业空白期与稳定性评估
超过3个月的空窗期需准备合理化解释,重点突出学习成果:
- 示例:2024年3-5月离职期间完成MIT分布式系统课程,实现Raft协议副本同步模拟器(GitHub可验证)
- 展示学习笔记与实验报告,证明自我驱动能力
2. 项目完成情况——多维度答辩框架
扩展分析:
(1)核心技术指标达成
- 性能优化案例:某电商项目将订单查询响应时间从2.3s降至180ms,具体措施:
- 二级缓存设计:本地Caffeine+Redis分布式缓存,解决缓存穿透的BloomFilter方案
- 数据库优化:ES替代MySQL全文检索,索引压缩率提升40%
- 代码层面:CompletableFuture实现异步编排,线程池参数动态调整
(2)技术风险管理
- 灰度发布策略:通过Feature Toggle逐步开放新功能,实时监控错误率(Prometheus+Granfana看板)
- 回滚机制设计:数据库版本化管理(Liquibase),代码回滚与数据迁移原子操作
(3)团队协作模式创新
- DevOps实践:基于GitLab CI/CD的自动化流水线,Docker镜像分层构建节省75%部署时间
- 代码质量管理:SonarQube规则定制(禁止System.out 日志),MR评审时圈复杂度控制在15以下
3. Java基础——深度知识体系
扩展分析:
(1)内存模型进阶
- 对象内存布局示例:64位JVM开启压缩指针时,对象头结构(Mark Word 8字节+Klass Pointer 4字节)
- 逃逸分析案例:方法内局部Date对象被优化为栈上分配,通过-XX:+PrintEscapeAnalysis验证
(2)并发编程陷阱
- 伪共享问题:Disruptor框架通过缓存行填充(@Contended)提升性能,实测AtomicLong吞吐量提升3倍
- CompletableFuture链式异常处理:exceptionally()与handle()的差异,需配合MDC实现全链路日志跟踪
(3)JVM调优实战
- G1回收器参数优化:-XX:MaxGCPauseMillis=200与-XX:G1NewSizePercent动态平衡案例
- 内存泄漏定位:MAT工具分析Dominator Tree,发现ThreadLocal未清理导致PermGen溢出
4. 自研工具开发——工程能力体现
扩展分析:
(1)安全测试工具
- 被动式代理扫描器:基于Burp Extender API实现,特点:
- 语义化参数分析(区分JSON字段与URL参数)
- 动态去重算法(SimHash替代传统MD5)
- 漏洞验证模块(SQL注入时间盲注Payload自动生成)
(2)效能提升工具
- 数据库变更自动化工具:
- 逆向工程:解析Pg_dump文件生成Flyway迁移脚本
- 智能回滚:通过SQL解析树实现DML操作逆向生成
- 可视化对比:利用jsPlumb库展示表结构差异图谱
(3)质量监控体系
- 日志分析平台:
- 基于ELK构建,定制Logstash Grok模式识别Java异常栈
- 告警规则:Error级别日志10分钟内超5次触发企业微信机器人通知
- 根因分析:通过日志聚类算法(K-means改进版)定位高频问题
12. SSRF防御体系演进
扩展分析:
(1)新型攻击向量
- Kubernetes API滥用:通过Master节点SSRF获取集群控制权(需同时存在匿名访问漏洞)
- 云元数据接口利用:AWS IMDSv1与v2协议差异,绕过IP限制的302跳转技巧
(2)深度防御策略
- 网络层:使用eBPF实现DNS请求过滤(拦截metadata.internal 等域名解析)
- 协议白名单:限制仅允许HTTP/HTTPS协议,过滤非标准端口(如@绕过技巧防御)
- 请求过程追踪:在Nginx层植入请求ID,全链路审计日志关联分析
(3)自动化检测方案
- 动态污点跟踪:基于Agent的Java Instrumentation方案,监控URLConnection等敏感类
- 语义分析引擎:使用ANTLR解析URL参数,识别内网IP模式(172.16.0.0/12等CIDR格式)
- 机器学习模型:训练LSTM网络检测异常跳转行为(正常业务重定向与恶意SSRF模式区分)