质数(各种筛法)

文章介绍了质数和合数的定义,以及如何使用试除法判断质数,分解质因数,并详细讨论了三种筛法(朴素筛法、埃氏筛法和线性筛法)的原理和时间复杂度,强调了线性筛在处理大数时的效率优势。
摘要由CSDN通过智能技术生成

定义

  1. 质数和合数是针对所有大于1的 “自然数” 来定义的(所有小于等于1的数都不是质数).

  1. 所有小于等于1的整数既不是质数也不是合数.

  1. 质数和素数都是同一种性质,只是叫法不同.

  1. 质数的判定------试除法 或 六倍原理.

(1).”d|n”代表的含义是d能整除n,(这里的”|”代表整除).

(2).一个合数的约数总是成对出现的,如果d|n,那么(n/d)|n,因此我们判断一个数是否为质数的时候,

只需要判断较小的那一个数能否整除n就行了,即只需枚举d<=(n/d),即dd<=n,d<=sqrt(n)就行了.

(3).sqrt(n)这个函数执行的时候比较慢.

bool is_prime(int n)
{
    if (n < 2)
        return 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值