abc212 E dp

文章描述了一个图论问题,给定n个城市和m条不可用的边,从1号城市出发,询问经过k步后能回到1号城市的方案数。通过动态规划(dp)解决,利用无法使用的边不超过5000的条件进行剪枝,降低复杂度并更新状态转移矩阵来计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给定n个城市,初始两两之间有边,现有m条边无法使用,初始在1,现在问走了k步回到1的方案数。

思路:首先我们可以想到一个dp[i][j]表示走了i步到了j点的转移,但是复杂度高了,那么我们考虑利用无法使用的边最多5000的条件,每次转移用总数去剪无法转移的情况。

/*keep on going and never give up*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
#define int long long
typedef pair<int, int> pii;
#define lowbit(x) x&(-x)
#define endl '\n'
#define wk is zqx ta die
const int mod = 998244353;
vector<int> pl[5005];
int dp[5005][5005];
signed main() {
	std::ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	int n, m, k;
	cin >> n >> m >> k;
	for (int i = 1; i <= m; i++) {
		int u, v;
		cin >> u >> v;
		pl[u].push_back(v);
		pl[v].push_back(u);
	}
	dp[0][1] = 1;
	for (int i = 1; i <= k; i++) {
		int sum = 0;
		for (int j = 1; j <= n; j++) {
			sum += dp[i - 1][j];
			sum %= mod;
		}
		for (int j = 1; j <= n; j++) {
			dp[i][j] = sum - dp[i - 1][j] + mod;
			dp[i][j] %= mod;
			for (auto g : pl[j]) {
				dp[i][j] = dp[i][j] - dp[i - 1][g] + mod;
				dp[i][j] %= mod;
			}
		}
	}
	cout << dp[k][1] << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值