java实现Trie(前缀树)

本文介绍了前缀树(Trie)的数据结构,用于存储和高效检索字符串,以及在自动补全和拼写检查中的应用。提供了Trie类的实现,包括构造函数、插入、搜索和检查字符串是否为前缀的方法。
摘要由CSDN通过智能技术生成

介绍

前缀树(Trie)是一种树形数据结构,用于存储字符串集合,通常用于快速检索大量的字符串。每个节点表示一个字符串的字符,从根节点到每个子节点的路径构成了一个字符串。这种结构使得在给定前缀的情况下,能够高效地查找以该前缀开头的所有字符串。前缀树在自动补全、拼写检查等应用中非常常见。

示例图如下:前缀树中就表示了字符串"inn","int","ate","age","adv","ant".

其结构的关键就是下可以拥有26个子节点代表26种英文字母的选择。

这种数据结构在处理大量的英文数据时会很快,不过相应的虽然提高了速度,但是空间的消耗比较大,因为每一个节点下方都可以有26个子节点。

实现

前缀树的实现可以直接查看力扣中的一道题

LCR 062. 实现 Trie (前缀树)

题目要求

Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

  • Trie() 初始化前缀树对象。
  • void insert(String word) 向前缀树中插入字符串 word 。
  • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
  • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。

示例:

输入
inputs = ["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
inputs = [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]

解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple");   // 返回 True
trie.search("app");     // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app");     // 返回 True

题目中给了现有结构如下:需要些三个方法和一个构造函数

class Trie {
    public Trie() {

    }
    public void insert(String word) {

    }
    public boolean search(String word) {

    }

    public boolean startsWith(String prefix) {

    }
}

构造函数

首先定义树中的节点,有两个属性:它下面的26个英文单词数组,和标记该节点是否为终点。

还提供了一个构造方法,创建时就会跟着创建数组。该数组中靠索引表示英文单词,如0就是a,1就是b,2就是c。表示前缀时用索引来组成字符串。如011就是abb。

    class Node{
        Node[] next;
        boolean isEnd;
        public Node(){
            next = new Node[26];
        }
    }

因此构造函数中就可以先定义一个根节点让等于new Node

    Node root;
    public Trie() {
       root = new Node();
    }

添加节点

添加时先判断此时节点是否为空,是空就在当前字符代表的索引处直接再创建一个节点。如果不为空则直接插入下一个节点,不要再创建。

例如第一个字符是a,那就在root.next[0]处创建一个新节点。是b,那就在root.next[1]处创建一个新节点。

    public void insert(String word) {
        Node cur = root;
        for(char ch:word.toCharArray()){
            if(cur.next[ch - 'a'] == null){
                cur.next[ch - 'a'] = new Node();
            }
            cur = cur.next[ch - 'a'];
        }
        cur.isEnd = true;
    }

搜索字符串

搜索中有两个方法,一是搜索和前缀相等的字符串,而是搜索当前字符串是不是某个前缀的一部分。比如要搜索字符app,在一个方法中,只有前缀树中有该字符串才行,而在第二个方法中只要前缀树中前面有app就会返回真,如有apple,就会返回真。

在搜索时会先从根节点开始,如果想要搜索的字符在节点后的数组中没有,则代表并没有该字符串,最后会返回isEnd,也就是说如果前缀包含有要搜索的字符,也会返回false,只有前缀等于时isEnd才是true,才证明搜索到。

    public boolean search(String word) {
        Node cur = root;
        for(char ch : word.toCharArray()){
            if(cur.next[ch - 'a'] == null)
                return false;
            cur = cur.next[ch - 'a'];
        }
        return cur.isEnd;
    }

第二个方法和第一个很像,只需要修改一下返回值即可。

    public boolean startsWith(String prefix) {
        Node cur = root;
        for(char ch : prefix.toCharArray()){
            if(cur.next[ch - 'a'] == null)
                return false;
            cur = cur.next[ch - 'a'];
        }
        return true;
    }

完整代码
 

class Trie {
    class Node{
        Node[] next;
        boolean isEnd;
        public Node(){
            next = new Node[26];
        }
    }
    Node root;
    public Trie() {
       root = new Node();
    }
    public void insert(String word) {
        Node cur = root;
        for(char ch:word.toCharArray()){
            if(cur.next[ch - 'a'] == null){
                cur.next[ch - 'a'] = new Node();
            }
            cur = cur.next[ch - 'a'];
        }
        cur.isEnd = true;
    }
    public boolean search(String word) {
        Node cur = root;
        for(char ch : word.toCharArray()){
            if(cur.next[ch - 'a'] == null)
                return false;
            cur = cur.next[ch - 'a'];
        }
        return cur.isEnd;
    }

    public boolean startsWith(String prefix) {
        Node cur = root;
        for(char ch : prefix.toCharArray()){
            if(cur.next[ch - 'a'] == null)
                return false;
            cur = cur.next[ch - 'a'];
        }
        return true;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值