相信很多同学都已经完成了这一章的题目,大家可以发现这章的题目并不算难,套路很固定,大部分在于计算,如求偏导,解拉格朗日方程,所以细心很重要,下面来看一看哪些题目是容易丢分的,李林老师想通过这些题目教会我们什么呢?
这种求一阶导数的,利用全微分其实一点都不复杂
dy=f1dx+f2dt
dF=F1dx+F2dy+F3dt=0 解这个方程就好了
这道题目其实不难,构造拉格朗日函数,然后解方程,答案其实忽略了一种情况,只是简单的说x=y 解这种方程核心在于消掉
只需要第一项乘上第二项前
的系数-第二项乘上第一项前
的系数。忽略了x^2+y^2=-1/2的情况。
首先要明白 可微 偏导存在 偏导连续 函数连续的关系
会利用定义法求偏导
可微的判断 z-
f/
x
x-
f/
y
y 比上根号下x^2+y^2=0
注意二元函数的极限怎么求 怎么判断不存在(找一条路径)
求二阶导数就不要用全微分了,就正常求偏导,计算量确实有点大,但是不难。