李林880多元函数微分学易错题

相信很多同学都已经完成了这一章的题目,大家可以发现这章的题目并不算难,套路很固定,大部分在于计算,如求偏导,解拉格朗日方程,所以细心很重要,下面来看一看哪些题目是容易丢分的,李林老师想通过这些题目教会我们什么呢?

这种求一阶导数的,利用全微分其实一点都不复杂

dy=f1dx+f2dt

dF=F1dx+F2dy+F3dt=0     解这个方程就好了

  这道题目其实不难,构造拉格朗日函数,然后解方程,答案其实忽略了一种情况,只是简单的说x=y  解这种方程核心在于消掉\lambda 只需要第一项乘上第二项前\lambda 的系数-第二项乘上第一项前\lambda 的系数。忽略了x^2+y^2=-1/2的情况。

首先要明白 可微 偏导存在 偏导连续  函数连续的关系

会利用定义法求偏导 

可微的判断 \Deltaz-\partialf/\partialx\Deltax-\partialf/\partialy\Deltay 比上根号下x^2+y^2=0

注意二元函数的极限怎么求 怎么判断不存在(找一条路径)

求二阶导数就不要用全微分了,就正常求偏导,计算量确实有点大,但是不难。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值