💞 💞人是不能太闲的,闲久了,努力一下就以为是拼命。
一.排序的概念及其运用
1.排序的概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
2.排序的应用
排序的应用可以说贯穿我们生活的很多地方
购物的时候,我们可以选择综合排序,销量排序,评论数排序,新品排序,价格排序等等,以此来找到适合自己的商品。
3.常见的排序算法
本次主要介绍插入排序中的直接插入排序和希尔排序。
二.直接插入排序
1.基本思想
直接插入排序是一种简单的插入排序法,其基本思想是:
把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
实际中我们玩扑克牌时,就用了插入排序的思想
下面是选择排序的动画演示图,方便大家理解。
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与
array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移。
2.代码展示
在搞定排序的整个过程前,我们先搞定排序的单趟。(以从小到大排序为例)
直接插入排序需要保证:要插入数字的前面是已经有序的序列即:当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序
函数需要三个形参:
1.指向数组的指针,
2.数组的个数
3.要插入数字的大小
void InsertSort2(int* a, int n,int x)
{
int end = n - 1;
int tmp = x;
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
下面我们运行一下看看对不对
可以看出来,没有问题。
下面我们开始写排序的整个过程,我们需要在外层再加一个循环。
(第一次循环把最第一个数当作一个有序数组,对数组第二个数进行插入)
(第二次循环把前两个数当作一个有序数组,对数组第三个数进行插入)
…
代码表示如下:
void InsertSort(int* a,int n)
{
for (int i = 0; i < n - 1; i++)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
}
循环结束条件为i < n - 1.。 n -1是数组最后一个元素,i < n会引发数组的访问越界。
我们看看运行结果如何
没有问题
3.总结
**直接插入排序的特性总结:
- 元素集合越接近有序,直接插入排序算法的时间效率越高
- 时间复杂度:O(N^2)
- 空间复杂度:O(1),它是一种稳定的排序算法
- 稳定性:稳定**
三.希尔排序
通过之前的总结我们知道,直接插入排序最坏的时间复杂度情况是O(N^2)。元素集合越接近有序,直接插入排序算法的时间效率越高,因此直接插入排序对无序,逆序的排序耗时很大。
为了解决这个情况,我们的唐纳德·希尔大佬发明了希尔排序。他是对直接插入排序的一种更高效的改进版本。
1.基本思想
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成多个
组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后,gap减小,重复上述分组和排序的工
作。直到gap到达=1时,所有记录在统一组内排好序。
下面是动图演示
2.代码展示
void ShellSort(int* a, int n)
{
//预排序
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
for (int i = 0; i < n - gap; i++)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
}
测试:
没有问题。
3.总结
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
- 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定:
- 稳定性:不稳定
完结。。。