每日一题之不同的子序列

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

示例 1:

输入:s = "rabbbit", t = "rabbit"
输出3
解释:
如下所示, 有 3 种可以从 s 中得到 "rabbit" 的方案rabbbit
rabbbit
rabbbit

示例 2:

输入:s = "babgbag", t = "bag"
输出5
解释:
如下所示, 有 5 种可以从 s 中得到 "bag" 的方案babgbag
babgbag
babgbag
babgbag
babgbag

 首先需要定义dp数组的含义,dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j],我们需要考虑两种情况,第一种是、当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。即dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配即dp[i][j] = dp[i - 1][j];代码如下:

func numDistinct(s string, t string) int {
dp:=make([][]int,len(s)+1)
for i,_:=range dp{
    dp[i]=make([]int,len(t)+1)
}
for i:=0;i<len(s);i++{
    dp[i][0]=1
}
for i:=1;i<=len(s);i++{
    for j:=1;j<=len(t);j++{
        if s[i-1]==t[j-1]{
            dp[i][j]=dp[i-1][j-1]+dp[i-1][j]
        }else{
            dp[i][j]=dp[i-1][j]
        }
    }
}
return dp[len(s)][len(t)]
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值