Scaling Law假设是否成立?所谓的AI难道只是镜花水月?从模型的底层构架方面探讨一些关于生成式AI的粗浅认识

越来越感觉生成式AI走错了方向,不是说生成式AI没有前途,而是目前的生成式AI只依赖于基于概率算法的大模型。事实上,只使用大模型作为生成式AI引擎的技术路线存在一种很隐蔽的根本性缺陷,这种缺陷导致需要浪费地球的许多资源,从材料到能源、从训练时间到算力中心空间。 我认为这种缺陷,事实上说明当今的AI缺少一种能力。

我们确实应该重视算力、能源的发展,而且这一点在最长的时间尺度上,完全没有问题。我始终坚信,AI一定是第四次工业革命的新质生产力之一。

但是,投资界中出现了对AI界投资是否能够回本的顾虑。

(可以参考高盛的这篇报告A skeptical look at AI investment | Goldman Sachs

这其中有一个理由是非常值得考虑的。第三次工业革命期间,互联网之所以能够普及,是因为成本的大大降低:人们使用互联网的成本越来越低,人们搭建互联网也越来越容易。另外的问题就是如何应用这个强大的力量,也就是应用场景是什么的问题,但我相信解决这个问题只是时间问题。

但目前的AI似乎不一样。目前的AI是堆算力,堆大数据,数据利用效率还可以更高。我知道大模型在只有数据量大到一定程度的时候表现会大大提升。但隐藏的代价是消耗大量资源,比如能源需要投入以前的好多倍,比如高精材料需要大量投入生产。

所以,这里可能存在潜在的泡沫。当然,这也意味着AI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值