Java计算文本的余弦相似度,可用来实现相似问题匹配问题

Java实现文本余弦相似度计算工具类
本文介绍了一个使用Java和jieba库计算文本间余弦相似度的工具类,通过Jieba分词并构建词汇表,计算两个文本向量的相似度,提供了一个简单的测试示例。
package com.easybbs.utils;

import com.huaban.analysis.jieba.JiebaSegmenter;
import com.huaban.analysis.jieba.SegToken;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class CosineSimilarityUtils {
    private static JiebaSegmenter segmenter = new JiebaSegmenter();

    public static double calculateCosineSimilarity(String text1, String text2) {
        List<String> words1 = tokenize(text1);
        List<String> words2 = tokenize(text2);

        Set<String> vocabulary = buildVocabulary(words1, words2);

        double[] vector1 = calculateVector(words1, vocabulary);
        double[] vector2 = calculateVector(words2, vocabulary);

        return calculateCosineSimilarity(vector1, vector2);
    }

    private static List<String> tokenize(String text) {
        List<String> tokens = new ArrayList<>();
        List<SegToken> segTokens = segmenter.process(text, JiebaSegmenter.SegMode.INDEX);
        for (SegToken segToken : segTokens) {
            tokens.add(segToken.word);
        }
        return tokens;
    }

    private static Set<String> buildVocabulary(List<String>... wordLists) {
        Set<String> vocabulary = new HashSet<>();
        for (List<String> wordList : wordLists) {
            vocabulary.addAll(wordList);
        }
        return vocabulary;
    }

    private static double[] calculateVector(List<String> words, Set<String> vocabulary) {
        int vocabSize = vocabulary.size();
        double[] vector = new double[vocabSize];

        for (String word : words) {
            if (vocabulary.contains(word)) {
                int index = getIndex(word, vocabulary);
                vector[index]++;
            }
        }

        return vector;
    }

    private static double calculateCosineSimilarity(double[] vector1, double[] vector2) {
        double dotProduct = 0.0;
        double norm1 = 0.0;
        double norm2 = 0.0;

        for (int i = 0; i < vector1.length; i++) {
            dotProduct += vector1[i] * vector2[i];
            norm1 += Math.pow(vector1[i], 2);
            norm2 += Math.pow(vector2[i], 2);
        }

        double similarity = dotProduct / (Math.sqrt(norm1) * Math.sqrt(norm2));
        return similarity;
    }

    private static int getIndex(String word, Set<String> vocabulary) {
        List<String> vocabList = new ArrayList<>(vocabulary);
        return vocabList.indexOf(word);
    }
}

上面是计算文本的余弦相似度的工具类

需要先在pom.xml文件中引入以下依赖

 <dependency>
            <groupId>com.huaban</groupId>
            <artifactId>jieba-analysis</artifactId>
            <version>1.0.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-lang3</artifactId>
            <version>3.12.0</version>
 </dependency>

下面是使用的简单例子

package com.easybbs.test;

import com.easybbs.utils.CosineSimilarityUtils;

public class CSTest {
    public static void main(String[] args) {
        String text1 = "我喜欢吃梨子";
        String text2 = "我喜欢吃苹果";

        double similarity = CosineSimilarityUtils.calculateCosineSimilarity(text1, text2);
        System.out.println("Cosine Similarity: " + similarity);
    }
}

运行结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值