自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(584)
  • 收藏
  • 关注

原创 【python报错】成功解决pip安装pytorch时出现ectTimeoutError超时报错

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-25 16:10:18 779 1

原创 【机器学习特征工程系列-09】相关性分析:如何发现特征之间的关系

相关性分析是特征工程中的一个重要环节,通过相关性分析,我们可以发现特征之间的关系,从而选择出对模型最有帮助的特征,提高模型的性能和可解释性。本文展示了多种相关性分析方法,包括皮尔逊相关系数、斯皮尔曼相关系数和卡方检验。选择哪种方法取决于具体的数据特性和模型需求。

2025-09-25 14:38:54 673

原创 【机器学习特征工程系列-08】特征选择:为什么它能提升模型性能?

特征选择是特征工程中的一个重要环节,通过特征选择,我们可以从大量的特征中选择出对模型最有帮助的特征,从而提高模型的性能和泛化能力。本文展示了多种特征选择方法,包括基于模型的特征选择、基于统计的特征选择、递归特征消除和L1正则化。选择哪种方法取决于具体的数据特性和模型需求。

2025-09-25 14:38:27 633

原创 【机器学习特征工程系列-07】特征构造:如何从原始数据中提取更多信息?

特征构造是特征工程中的一个重要环节,通过特征构造,我们可以从原始数据中提取更多的信息,从而提高模型的性能。本文展示了多种特征构造方法,包括多项式特征构造、交互特征构造、时间特征构造、文本特征构造和图像特征构造。选择哪种方法取决于具体的数据特性和模型需求。

2025-09-25 14:37:59 1037

原创 【机器学习特征工程系列-05】数据标准化:为什么它对模型如此重要?

数据标准化是特征工程中的一个重要步骤,它可以帮助我们提高模型的性能和训练效率。通过Min-Max标准化和Z-Score标准化,我们可以将数据转换为统一的尺度,从而减少特征之间的量纲差异。希望本文能帮助你更好地理解和掌握数据标准化的方法和技巧。

2025-09-21 13:10:15 771

原创 【机器学习特征工程系列-06】特征编码:分类特征的处理方法

分类特征编码是特征工程中的一个重要步骤,不同的编码方法适用于不同的情况。Label Encoding 简单直观,但可能会引入类别之间的顺序关系;One-Hot Encoding 可以避免顺序关系问题,但会增加数据的维度;Binary Encoding 可以减少数据的维度,同时保留类别之间的关系;Frequency Encoding 可以保留类别之间的频率关系,但可能会引入噪声;Target Encoding 可以保留类别与目标变量之间的关系,但可能会导致过拟合。

2025-09-21 13:09:25 1143

原创 【机器学习特征工程系列-04】数据清洗:处理缺失值的实用技巧

处理缺失值是数据清洗中的一个重要步骤,不同的方法适用于不同的情况。删除缺失值是最简单的方法,但可能会导致数据量减少。填充缺失值可以保持数据量,但需要根据数据的特性和分布选择合适的填充方法。对于复杂的缺失值问题,可以使用机器学习模型来预测缺失值。希望本文能帮助你更好地理解和掌握处理缺失值的方法和技巧。在接下来的系列文章中,我们将继续深入探讨特征工程的其他环节,如特征选择、特征构造和特征降维。敬请期待!

2025-09-21 10:31:58 904

原创 【机器学习特征工程系列-03】Python实战:如何加载和预览数据?

加载和预览数据是机器学习流程中的第一步,也是至关重要的一步。通过使用pandas库加载数据,并使用各种方法对数据进行初步的探索性分析,我们可以更好地理解数据的结构和特性,从而为后续的数据预处理和特征工程打下坚实的基础。希望本文能帮助你更好地掌握加载和预览数据的方法和技巧。

2025-09-17 13:45:27 1039

原创 【机器学习特征工程系列-02】特征重要性:为什么它对模型至关重要?

特征重要性是指每个特征在模型中的贡献程度。不同的模型有不同的方法来评估特征重要性。例如,决策树模型可以通过特征分裂的次数来评估特征重要性,而线性模型可以通过特征的系数大小来评估特征重要性。特征重要性是评估特征对模型预测能力贡献的一个关键指标。通过评估特征重要性,我们可以选择对模型最有帮助的特征,从而提高模型的性能、减少计算成本并提高模型的可解释性。在本文中,我们展示了如何使用随机森林、方差分析和XGBoost来评估特征重要性。希望这些方法能帮助你在实际项目中更好地理解和应用特征重要性。

2025-09-17 13:44:45 757

原创 【机器学习特征工程系列-01】数据预处理:特征工程的第一步

数据预处理是特征工程的第一步,也是至关重要的一步。通过数据清洗、数据标准化和特征编码,我们可以将原始数据转换为适合模型输入的形式,从而提高模型的性能和最终效果。希望本文能帮助你更好地理解和掌握数据预处理的方法和技巧。在接下来的系列文章中,我们将继续深入探讨特征工程的其他环节,如特征选择、特征构造和特征降维。敬请期待!

2025-09-14 17:12:39 1050

原创 【机器学习特征工程系列-00】机器学习新手必读:特征工程入门指南

特征工程是机器学习中一个极其重要的环节,它可以帮助我们提高模型的性能、减少数据噪声和提升模型的解释性。通过数据预处理、特征选择、特征构造和特征降维等步骤,我们可以将原始数据转换为更有意义的特征,从而构建出更高效的机器学习模型。希望本文能帮助你更好地理解和掌握特征工程的基本概念和操作方法。在实际项目中,特征工程需要根据具体问题进行灵活应用,不断尝试和优化,才能找到最适合的特征工程方案。

2025-09-13 20:49:59 1039

原创 【数据可视化-116】全球假期排行榜可视化分析:探索世界各国的工作与生活平衡(中国排名倒数第七)

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-12 16:57:09 777

原创 【数据可视化-115】PyEcharts桑基图绘制指南:理论与电商案例全解读

桑基图是一种特殊的流图,它通过宽度来表示流量的大小,线条的宽度与流量成正比。这种图表非常适合展示数据的流向和转换关系,例如能源流向、资金流动、用户转化等。直观的流量表示:通过线条的宽度直观地展示流量大小。清晰的流向展示:清晰地展示数据从一个节点流向另一个节点的过程。丰富的交互功能:支持鼠标悬停、点击等交互操作,增强用户体验。通过本文,你已经了解了如何使用 PyEcharts 绘制桑基图,包括数据格式、代码实现以及一个具体的案例。

2025-09-12 16:55:33 983

原创 【数据可视化-114】2025年7月SUV销量排名榜Top100数据分析:用Python和Pyecharts打造炫酷可视化大屏

本文使用Python和PyEcharts创建了2025年7月SUV销量Top100的可视化大屏,包含六个维度的分析图表。所有图表采用黑色背景和炫酷配色,提供了直观的数据洞察。通过这种可视化分析,我们可以更直观地理解SUV市场的竞争格局、价格分布和品牌表现,为汽车行业相关决策提供数据支持。

2025-09-12 16:54:12 972

原创 【数据可视化-113】2024年黄山市(我的老家)各区县GDP数据分析::用Python和Pyecharts打造炫酷可视化大屏

本文使用Python和PyEcharts创建了2024年黄山市各区县GDP的可视化大屏,包含七种不同类型的图表。所有图表采用黑色背景和炫酷配色,提供了直观的数据洞察。通过这种可视化分析,我们可以更直观地理解黄山市各区县的经济发展状况和区域差异,为相关决策提供数据支持。

2025-09-12 16:52:40 1196

原创 【数据可视化-112】使用PyEcharts绘制TreeMap(矩形树图)完全指南及电商销售数据TreeMap绘制实战

TreeMap是一种有效的空间填充可视化方法,特别适合展示具有层次结构的大规模数据。它能够同时显示数据的层次关系和数值大小,广泛应用于文件大小分析、市场份额展示、资源配置等领域。TreeMap是一种强大的数据可视化工具,特别适合展示层次结构数据和比例关系。PyEcharts提供了丰富的配置选项,可以创建高度定制化的TreeMap图表。TreeMap数据可以是扁平结构或层次结构可以使用label_opts配置标签显示方式可以使用levels参数为不同层级配置不同样式可以使用实现数据到颜色的映射。

2025-09-12 16:50:37 713

原创 【数据可视化-111】93大阅兵后的军费开支情况———2024年全球军费开支分析:用Python和Pyecharts打造炫酷可视化大屏

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-09 10:40:36 1132

原创 【数据可视化-110】Pyecharts中的Timeline时间轴:动态数据可视化指南

Pyecharts 是一个用于生成 Echarts 图表的 Python 库,它提供了丰富的图表类型和灵活的配置选项。Timeline 是 Pyecharts 的一个组件,它允许用户沿着时间轴查看数据的不同状态。通过使用Pyecharts的Timeline组件,我们可以轻松地创建展示数据随时间变化的趋势。这种类型的图表特别适合展示时间序列数据,如股票价格、销售额、用户增长等。希望这个示例能帮助你更好地理解和使用Pyecharts的Timeline功能。

2025-09-09 10:37:50 936

原创 【数据可视化-109】2025年各省本科录取率分析:用Python和Pyecharts打造炫酷可视化大屏

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-06 20:57:15 680

原创 【数据可视化-108】2025年6月新能源汽车零售销量TOP10车企分析大屏(PyEcharts炫酷黑色主题可视化)

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-04 14:55:14 1106

原创 【数据可视化-107】2025年1-7月全国出口总额Top 10省市数据分析:用Python和Pyecharts打造炫酷可视化大屏

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-04 14:47:55 1624

原创 【数据可视化-106】华为2025上半年财报分析:用Python和Pyecharts打造炫酷可视化大屏

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-04 14:46:34 1175

原创 【数据可视化-105】Pyecharts主题组件:让你的图表瞬间高大上

Pyecharts 提供了多种预设主题,每种主题都有其独特的风格和配色方案。这些主题可以帮助我们快速地改变图表的外观,而无需手动调整每个图表的样式。default:默认主题light:浅色主题dark:深色主题chalk:粉笔风格主题essos:冰与火之歌风格主题infographic:信息图表风格主题macarons:马卡龙风格主题purple-passion:紫色激情主题roma:罗马风格主题romantic:浪漫风格主题shine:闪耀风格主题。

2025-09-01 22:38:04 986

原创 【数据可视化-104】安徽省2025年上半年GDP数据可视化分析:用Python和Pyecharts打造炫酷大屏

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-01 22:36:25 918

原创 【数据可视化-103】蜜雪冰城门店分布大揭秘:2025年8月数据分析及可视化

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-01 22:34:12 1232 1

原创 【数据可视化-102】苏州大学招生计划全解析:数据可视化的五大维度

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-09-01 22:32:19 917

原创 【数据可视化-101】中科大2025年分省招生计划:安徽15%,不给老乡开后门,才叫真正的公平

省市招生计划占比安徽1920.14964926广东92浙江70中科大小而精,除安徽招生192人和河南招生104人之外,其他省份招生人数都少于100人。

2025-08-27 15:43:10 1166 1

原创 【数据可视化-100】使用 Pyecharts 绘制人口迁徙图:步骤与数据组织形式

人口迁徙图是一种展示人口流动情况的可视化图表,通常用于分析人口迁移的来源地和目的地。pyecharts是一个强大的 Python 数据可视化库,支持多种图表类型,包括地图和地理坐标系,非常适合绘制人口迁徙图。

2025-08-25 17:04:14 1034 1

原创 【数据可视化-99】2025 年各地区夏粮产量可视化分析:Python + pyecharts打造炫酷暗黑主题大屏

区域差异明显:河南和山东的夏粮总产量最高,而海南和宁夏的总产量相对较低。这表明不同地区的农业发展水平存在差异。单位面积产量差异:上海的单位面积产量最高,而广西的单位面积产量相对较低。这表明不同地区的农业生产效率存在差异。总产量分布:河南和山东的总产量占比较高,而海南和宁夏的总产量占比较低。这表明不同地区的粮食生产贡献存在差异。总产量的省份词云图:通过词云图,我们可以直观地看到各地区的总产量差异,总产量较高的省份词云较大,而总产量较低的省份词云较小。

2025-08-25 15:38:02 1158

原创 【数据可视化-98】2025年上半年地方财政收入Top 20城市可视化分析:Python + Pyecharts打造炫酷暗黑主题大屏

收入对比:上海市和北京市的财政收入最高,分别为4684.4亿元和3571.2亿元。收入占比:上海市和北京市的财政收入占比较高,分别占到了较大的比例。增速走势:深圳市和北京市的增速较高,分别为3.4%和2.6%。增速分级:大部分城市的增速为正增长,少数城市为负增长。城市词云:上海市和北京市的词云较大,表明这两个城市的财政收入较高。总之,通过对财政收入数据的可视化分析,我们可以更好地了解各城市的财政收入水平,为制定相关政策提供参考依据。

2025-08-25 14:58:40 775

原创 【数据可视化-97】2024年人均薪酬最高Top 100公司可视化分析Python + pyecharts打造炫酷暗黑主题大屏

薪酬差异:不同公司的人均薪酬存在显著差异,部分公司人均薪酬远高于其他公司。行业差异:不同行业的公司在人均薪酬上也存在差异,某些行业可能更倾向于支付高薪。行业分布:通过漏斗图,我们可以直观地看到各所属行业的分布情况。总之,通过对人均薪酬数据的可视化分析,我们可以更好地了解各公司的薪酬水平,为制定相关政策提供参考依据。

2025-08-25 14:56:19 804

原创 【数据可视化-96】使用 Pyecharts 绘制主题河流图(ThemeRiver):步骤与数据组织形式

本文详细介绍了如何使用 Pyecharts 绘制主题河流图,并重点介绍了主题河流图的数据组织形式。通过嵌套的列表结构,我们可以轻松地组织和展示多个时间序列数据。主题河流图不仅美观,而且非常直观,特别适合展示多个时间序列数据的动态变化。

2025-08-21 22:41:02 865

原创 【数据可视化-95】使用 Pyecharts 绘制雷达图:步骤与数据组织形式

本文详细介绍了如何使用 Pyecharts 绘制雷达图,并重点介绍了雷达图的数据组织形式。通过 Schema 定义每个维度的名称、最大值和最小值,通过数据列表表示每个数据点的值,我们可以轻松地组织和展示多变量数据。雷达图不仅美观,而且非常直观,特别适合展示多个维度的比较。

2025-08-20 14:09:33 806

原创 【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队

得分能力:澳大利亚队在得分能力上略占优势,尤其是库克斯和加洛韦的表现非常突出。中国队的胡金秋和赵睿也有较高的得分,但整体得分能力稍逊一筹。投篮命中率:澳大利亚队的投篮命中率普遍较高,显示出较高的进攻效率。中国队的投篮命中率相对较低,但胡金秋和赵睿的表现较为突出。篮板能力:中国队在篮板球的争抢上表现出色,尤其是胡金秋以 10 个总篮板领先。这表明中国队在内线的防守和篮板球控制上做得较好。助攻与抢断:澳大利亚队的麦格尼在助攻和抢断上表现突出,而中国队的赵睿和程帅澎也有不俗的表现,但在整体数据上稍逊一筹。

2025-08-19 19:17:20 1031

原创 【数据可视化-93】使用 Pyecharts 绘制旭日图:步骤与数据组织形式

本文详细介绍了如何使用 Pyecharts 绘制旭日图,并重点介绍了旭日图的数据组织形式。通过嵌套的列表结构,我们可以轻松地组织和展示多层级的数据。旭日图不仅美观,而且非常直观,特别适合展示复杂的层级关系,我们还可以使用在数据中的颜色设置来规定绘制图形的颜色,设置"itemStyle": {“color”: “#e65832”}参数即可。

2025-08-19 09:27:03 1097

原创 【数据可视化-92】使用 Pyecharts 绘制乡镇街道级地图:以安徽省黄山市休宁县为例(我的老家)

本文详细介绍了如何使用 Pyecharts 绘制乡镇街道级地图,以安徽省黄山市休宁县(我的老家)为例。通过自定义 GeoJSON 数据和 Pyecharts 的强大功能,我们可以轻松实现乡镇街道级地图的绘制。这种方法不仅适用于休宁县,还可以扩展到其他地区,帮助我们更好地展示地理信息数据。

2025-08-18 09:17:48 1004

原创 【数据可视化-91】2025 年 1-6 月浙江省各市居民收入可视化分析:Python + pyecharts打造炫酷暗黑主题大屏

区域差异明显:杭州市和宁波市的全体居民人均可支配收入最高,而丽水市和衢州市的全体居民人均可支配收入相对较低。这表明浙江省内各市之间的经济发展水平存在差异。增长趋势不同:丽水市和衢州市的全体居民人均可支配收入增长百分比较高,而温州市和嘉兴市的增长百分比较低。这表明不同城市的经济发展速度存在差异。城乡差距显著:城镇居民人均可支配收入普遍高于农村居民人均可支配收入,且两者之间的差距在不同城市之间存在差异。这表明城乡之间的发展不平衡问题依然存在。

2025-08-18 09:12:04 760

原创 【数据可视化-90】2023 年城镇居民人均收入可视化分析:Python + pyecharts打造炫酷暗黑主题大屏

区域差异明显:东部沿海地区的省份人均收入普遍较高,而中西部地区的省份人均收入相对较低。这主要是由于东部地区经济发展水平较高,产业结构较为优化,就业机会较多,居民收入水平也相对较高;而中西部地区经济发展水平相对较低,产业结构较为单一,就业机会较少,居民收入水平也相对较低。增量分布不均:人均收入增量较高的省份主要集中在东部沿海地区和部分中部地区,而西部地区的省份人均收入增量相对较低。这说明东部地区和部分中部地区的经济发展速度较快,居民收入增长较快;而西部地区的经济发展速度相对较慢,居民收入增长较慢。

2025-08-15 17:42:34 1030 1

原创 【数据可视化-89】基孔肯雅热病例数据分析与可视化:Python + pyecharts洞察疫情动态

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-08-14 22:03:07 1614 1

原创 【数据可视化-88】航空公司航班数据分析与可视化:Python + pyecharts洞察航空旅行趋势

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。

2025-08-13 14:41:09 738 1

信用卡欺诈检测数据集,和机器学习特征筛选:提升模型性能的关键步骤中的特征筛选代码案列

信用卡欺诈检测数据集,和”【机器学习】特征筛选:提升模型性能的关键步骤“中的特征筛选代码案列

2024-04-22

机器学习/数据挖掘/数据分析 + pyecharts/seaborn/matplotlib + 二手房分析 + 数据可视化展示

资源描述: 本资源为机器学习、数据挖掘和数据分析领域的项目,旨在通过使用Python库(包括pyecharts、seaborn和matplotlib)对二手房数据进行分析和可视化展示。 项目的主要目标是挖掘二手房数据背后的隐藏信息,并通过数据可视化的方式呈现这些信息,以便更好地理解和解释二手房市场的特点和趋势。 在这个项目中,我们使用了pyecharts库来生成各种图表和图形,包括动态图、地理图和热力图等,以展示二手房数据的空间分布和变化趋势。pyecharts基于百度开源的Echarts图表库,提供了丰富的图表类型和交互功能,使得数据的可视化呈现更加生动和具有吸引力。 同时,我们还使用了seaborn和matplotlib库来绘制统计图表、直方图、箱线图等,以及进行数据探索和分析。这些库提供了丰富的数据可视化工具和函数,使得我们能够更好地理解数据的分布、关系和趋势。 通过使用这些库和工具,我们可以对二手房数据进行处理、清洗、分析和可视化,从而揭示出二手房市场的一些重要特征,如价格分布、地区分布、房型偏好等。

2024-03-23

机器学习 推荐系统 相似度计算

西雅图酒店数据集,基于用户选择的酒店,为其推荐相似度高的Top10个其他酒店。

2024-03-13

机器学习 + lightgbm/贝叶斯优化/k折交叉验证 + 基于贝叶斯最优化过程 + 优化模型的代码

资源描述 内容概要 本资源提供了基于LightGBM模型的贝叶斯优化过程的代码实现。通过使用贝叶斯优化算法,本代码可以高效地调整LightGBM模型的超参数,以达到优化模型性能的目的。同时,代码中还集成了k折交叉验证机制,以更准确地评估模型性能,并减少过拟合的风险。 适用人群 机器学习爱好者与从业者 数据科学家 数据分析师 对LightGBM模型和贝叶斯优化算法感兴趣的研究者 使用场景及目标 当需要使用LightGBM模型解决分类或回归问题时,可以使用本资源中的代码进行模型超参数的优化。 希望通过自动化手段调整模型参数,以提高模型预测精度或降低计算成本的场景。 在模型开发过程中,需要快速找到最优超参数组合,以加快模型开发进度。 其他说明 代码使用了Python编程语言,并依赖于LightGBM、Scikit-learn等机器学习库。 代码中提供了详细的注释和说明,方便用户理解和使用。 用户可以根据自身需求,修改代码中的参数和配置,以适应不同的应用场景。

2024-03-08

机器学习/工业制造 + ML/xgboost + 异烟酸在生成过程中的各个参数的优化来预测最终的收率

内容概要: 本资源包含异烟酸生成过程中各个参数的优化数据集及相应的预测代码。数据集详细记录了不同生产条件下的异烟酸生成参数,如温度、压力、反应物浓度等,以及对应的最终收率。同时,提供了基于机器学习的预测模型代码,用于根据给定参数预测异烟酸的收率。通过此资源,用户可以深入了解异烟酸生成过程中的参数影响,优化生产条件,提高收率。 适用人群: 化学工程及工艺领域的研究人员 化工企业技术人员 数据分析师和机器学习爱好者 使用场景及目标: 在实验室研究阶段,通过调整数据集中的参数,观察收率变化,为优化实验条件提供依据。 在工业生产中,利用预测模型对生产条件进行快速评估,找到最佳生产参数组合,提高异烟酸的收率。 在教学培训中,作为案例素材,帮助学生理解化学工程中的参数优化及机器学习应用。 其他说明: 数据集已经过预处理和标准化,方便用户直接使用。 预测代码基于Python编写,使用了常用的机器学习库,易于理解和修改。 本资源提供免费下载和使用,但请尊重原创,不得用于商业盈利。

2024-03-07

机器学习 + lightgbm/网格搜索交叉验证 + 贷款违约预测(二分类模型) + 预测一个用户是否会产生违约

内容概要: 本数据集专注于贷款违约预测问题,包含了大量借款人的个人信息、财务状况等多元数据。旨在帮助研究者、金融机构和数据分析师更准确地预测贷款违约风险,为贷款审批、风险管理和信用评估提供有力支持。 适用人群: 金融风控领域的研究人员、金融机构信贷部门人员、数据分析师与机器学习工程师。 使用场景及目标: 贷款审批流程优化:通过模型预测,快速识别潜在的高风险借款人,提高审批效率,减少不良贷款的发生。 风险预警与监控:实时监控借款人的信用状况变化,对可能出现违约的借款人进行及时预警,采取相应的风险控制措施。 信用评分系统开发:基于数据集构建信用评分模型,为借款人提供客观、公正的信用评分,辅助金融机构进行贷款定价和额度设定。 其他说明: 数据集已经过脱敏处理,确保个人隐私信息安全。

2024-03-07

深度学习/NLP + BERT-CRF + 实体识别 + 医学糖尿病数据命名实体识别

内容概要: 医学糖尿病数据命名实体识别项目是一个专注于从医学文本中自动识别和提取与糖尿病相关的命名实体的项目。该项目包括一个经过精心标注的糖尿病数据集,该数据集涵盖了各种医学文献和临床记录中的糖尿病相关术语,如疾病名称、症状、药物、检查项目等。此外,项目还提供了一套实现代码,用于训练命名实体识别模型,并对新的医学文本进行自动标注。 适用人群: 本资源适用于对医学自然语言处理(NLP)感兴趣的研究人员、数据科学家、医学专家以及开发者。 使用场景及目标: 医学文献挖掘、临床决策支持、药物研发与监管; 其他说明: 数据集说明:数据集经过专业医学人员的标注和审核,确保标注的准确性和一致性。同时,数据集的规模和多样性也经过精心设计,以满足不同应用场景的需求。 实现代码说明:代码采用主流的深度学习框架编写,具有良好的可扩展性和可定制性。用户可以根据自己的需求对代码进行修改和优化,以适应不同的任务和数据集。 使用指南:项目提供详细的使用指南和技术文档,帮助用户快速上手和使用本资源。

2024-03-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除