自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(329)
  • 收藏
  • 关注

原创 【机器学习案列分析】逻辑回归预测银行客户是否会开设定期存款账户

本数据集旨在预测银行客户是否会开设定期存款账户。数据集包含了大量银行客户的个人信息和交易历史,涵盖了各种可能影响客户决策的因素。通过对这些数据的分析,银行可以更好地理解客户的需求和偏好,进而制定更有效的营销策略。

2024-06-29 22:23:53 3358 110

原创 【机器学习】Sklearn使用教程---入门与应用案列

Scikit-learn(简称Sklearn)是Python中一个强大的机器学习库,它提供了大量现成的机器学习算法和工具,用于处理回归、分类、聚类、降维等任务。Sklearn的设计目标是提供一个简单、高效、易于使用的工具集,使得机器学习开发者能够快速地应用各种算法来解决实际问题。简单高效:提供了用户友好的接口和高效的实现,使得机器学习实验变得更加容易。可重用性:使得机器学习算法能够在不同的环境中重复使用,提高了开发效率。基于NumPy、SciPy和Matplotlib。

2024-06-19 13:02:55 2262 111

原创 【Python数据挖掘实战案例】机器学习LightGBM算法原理、特点、应用---基于鸢尾花iris数据集分类实战

在数字化时代,数据已经成为企业和社会决策的重要依据。数据挖掘作为一门交叉学科,结合了统计学、机器学习、数据库技术和可视化等多个领域的知识,旨在从海量数据中提取有价值的信息,以支持商业决策、科学研究和社会治理。通过数据挖掘,企业可以发现市场趋势、优化产品设计、提升用户体验;科研人员可以揭示自然规律、推动学科发展;政府部门可以优化资源配置、提高治理效率。因此,数据挖掘在当今社会具有极其重要的地位和应用价值。

2024-06-06 10:47:58 11526 228

原创 【机器学习-23】关联规则(Apriori)算法:介绍、应用与实现

关联规则学习是一种数据挖掘技术,旨在发现数据集中项之间的有趣关系。这些关系通常以“如果…那么…”的形式呈现,表示一种条件与结论的关联性。在商业分析中,关联规则学习常用于识别顾客购买行为中的模式,例如哪些商品经常被一起购买。通过发现这些模式,企业可以制定更有效的营销策略,提高销售额和客户满意度。关联规则学习的重要性在于它能够从大量数据中提取出有价值的信息,帮助企业更好地理解客户行为和市场需求。这些信息不仅可以用于产品推荐、交叉销售等场景,还可以为企业的战略决策提供有力支持。

2024-05-26 18:53:36 6490 183

原创 【数据可视化-07】波士顿房价预测数据分析

通过本次波士顿房价预测项目,我们深入探索了数据可视化在房价预测中的应用。通过绘制散点图、相关性矩阵、箱线图、直方图和密度图等多种可视化图表,我们成功地揭示了房价与各特征之间的关系及趋势。同时,我们也发现了数据中存在的一些异常值和潜在问题,并提出了相应的处理建议。在模型训练方面,我们选择了合适的预测模型,并通过调整模型参数和优化算法来提高模型的预测性能。最终,我们得到了一个具有较高预测精度的房价预测模型,可以为房地产市场的投资者和决策者提供有价值的参考信息。

2024-05-23 13:58:47 5603 236

原创 【数据可视化-05】:Plotly数据可视化宝典

Plotly是一个基于Web的数据可视化库,它支持多种编程语言,包括Python、R、JavaScript等。Plotly具有强大的图表定制能力、丰富的图表类型和交互功能,广泛应用于数据分析、科学研究和机器学习等领域。Plotly的历史可以追溯到2012年,由克里斯·帕特尔(Chris Plotly)等人创建。经过多年的发展,Plotly已经成为数据可视化领域的佼佼者之一。Plotly作为一款功能强大的数据可视化库,在机器学习项目中发挥着重要作用。

2024-05-15 18:11:00 4254 231

原创 【数据可视化-04】Pyecharts数据可视化宝典

Pyecharts提供了丰富的配置项和参数,用于自定义图表的样式、布局等。标题配置:使用title_opts参数配置图表的标题,包括标题文本、位置、颜色等。坐标轴配置:使用xaxis_opts和yaxis_opts参数配置X轴和Y轴的样式和属性,如标签、刻度线、分割线等。数据项配置:使用和等方法添加数据到图表中,并可以配置数据项的样式和属性,如颜色、标记符号等。全局配置项:使用方法配置图表的全局样式和布局,如标题、图例、背景色等。其他配置项。

2024-05-12 18:51:35 9458 210

原创 【数据可视化-03】Pandas图形实战宝典

在数据可视化中,自定义图形样式是提升图表可读性和美观性的重要手段。Pandas通常结合Matplotlib库进行绘图,而Matplotlib提供了丰富的API来自定义图形的各种属性。颜色:可以通过设置color参数来自定义线条、标记、区域等的颜色。线型:可以通过设置linestyle或ls参数来自定义线条的类型,如实线、虚线、点线等。标签:可以通过设置xlabelylabel和title参数来添加或修改坐标轴和标题的标签。

2024-05-09 19:59:07 9727 231

原创 【数据可视化-02】Seaborn图形实战宝典

Seaborn是一个基于Python的数据可视化库,它建立在matplotlib的基础之上,为统计数据的可视化提供了高级接口。Seaborn通过简洁美观的默认样式和绘图类型,使数据可视化变得更加简单和直观。它特别适用于那些想要创建具有吸引力且信息丰富的统计图形的数据科学家和数据分析师。集成性:Seaborn与pandas数据结构紧密结合,使得数据分析和可视化可以无缝衔接。美观性:Seaborn提供了精心设计的默认样式和调色板,使得图形更具吸引力。统计绘图。

2024-05-06 20:40:57 12302 239

原创 【机器学习-22】集成方法---Boosting之AdaBoost

1.1*集成学习的概念**1.1.1集成学习的定义集成学习是一种通过组合多个学习器来完成学习任务的机器学习方法。它通过将多个单一模型(也称为“基学习器”或“弱学习器”)的输出结果进行集成,以获得比单一模型更好的泛化性能和鲁棒性。1.1.2集成学习的基本思想集成学习的基本思想可以概括为“三个臭皮匠顶个诸葛亮”。通过将多个简单模型(弱学习器)的预测结果进行组合,可以得到一个更强大、更稳定的模型(强学习器)。这种组合可以有效地降低单一模型的偏差和方差,从而提高整体的预测性能。1.1.3。

2024-05-04 21:25:06 8372 144

原创 【数据可视化-01】Matplotlib图形实战宝典

本文将介绍如何使用matplotlib绘制折线图、直方图、饼图、散点图和柱状图等数据分析中常见的图形,并附上相应的代码示例,可以当初matplotlib函数库来使用,将案列中的数据替换成自己真实的数据即可绘制出符合条件的图像。下面封装的ineChartPlotter类,是为绘制不同种类的折线图,有draw_line_chart、draw_line_ndims_one_dim和draw_nline_chart方法,具体的作用参看图片即可了解;最后,我们设置了X轴和Y轴的刻度标签,并为图表添加了标题。

2024-05-01 23:37:03 11113 207

原创 【机器学习-21】集成学习---Bagging之随机森林(RF)

在机器学习的广袤领域中,集成学习是一种强大且灵活的策略,它通过将多个单独的学习器(或称为“基学习器”)组合起来,形成一个更加强大的学习器,以提升模型的预测性能。集成学习的核心思想在于“集体智慧”的力量,即多个学习器的联合决策通常会比单一学习器的决策更为准确和稳健。集成学习的重要性在于它能够有效解决单一学习器可能存在的过拟合、欠拟合、稳定性差等问题。通过将多个基学习器的预测结果进行综合,集成学习不仅能够提高预测精度,还能增强模型的鲁棒性和泛化能力。

2024-04-28 21:37:12 11064 258

原创 【机器学习-19】集成学习---投票法(Voting)

集成学习是一种强大的机器学习方法,它通过构建并结合多个学习器(也称为“基学习器”或“弱学习器”)的预测结果来完成学习任务。集成学习的主要目的是通过结合多个学习器的预测结果来提高模型的泛化能力和鲁棒性,降低单一学习器可能存在的过拟合或欠拟合风险。集成学习的基本原理在于,不同的学习器往往具有不同的偏差和方差特性,它们在各自的训练数据集上可能会产生不同的预测结果。当我们将这些学习器的预测结果进行某种形式的结合时,可以期望它们的偏差和方差特性能够相互抵消或互补,从而得到更加稳定和准确的预测结果。

2024-04-25 18:02:29 13582 276

原创 【机器学习-17】数据变换---小波变换特征提取及应用案列介绍

小波变换作为一种前沿的数据分析工具,近年来在信号分析领域崭露头角。小波分析的理论和方法凭借其独特优势,在信号处理、图像处理、语音处理、模式识别以及量子物理等多个领域得到了广泛的应用,堪称近年来在工具及方法上的重大突破。小波变换以其多分辨率的特性,在时域和频域均展现出对信号局部特征的强大表征能力。通过伸缩和平移等运算过程,小波变换能够对信号进行多尺度聚焦分析,为非平稳信号的时频分析提供了一种有效手段。它允许我们由粗及细地逐步观察信号,从而精准地提取出有用信息。

2024-04-16 17:30:52 11794 254

原创 【机器学习-16】贝叶斯(Bayes)算法:原理、应用与优化

1. 总结贝叶斯算法在机器学习中的核心价值和意义贝叶斯算法在机器学习中扮演着至关重要的角色,其核心价值和意义主要体现在以下几个方面:首先,贝叶斯算法提供了一种基于概率的推理框架,能够处理各种不确定性和复杂性。在现实世界的数据集中,特征之间的依赖关系、类别的模糊性等问题往往难以避免。贝叶斯算法通过计算条件概率来估计类别的后验概率,从而能够在这些不确定性中找到最可能的分类结果。其次,贝叶斯算法具有坚实的数学理论基础,其推导过程清晰且易于理解。这使得贝叶斯算法在实际应用中具有较高的可靠性和稳定性。

2024-04-13 18:00:00 13821 294

原创 【机器学习-15】决策树(Decision Tree,DT)算法:原理与案例实现

决策树算法是机器学习领域中的一种重要分类方法,它通过树状结构来进行决策分析。决策树凭借其直观易懂、易于解释的特点,在分类问题中得到了广泛的应用。本文将介绍决策树的基本原理,包括熵和信息熵的相关概念,以及几种经典的决策树算法。

2024-04-10 16:30:18 20294 264

原创 【机器学习-14】K-means聚类算法:原理、应用与优化

在众多聚类算法中,K-means算法因其简单高效而备受青睐。K-means算法的基本思想是:通过迭代的方式,将数据划分为K个不同的簇,并使得每个数据点与其所属簇的质心(或称为中心点、均值点)之间的距离之和最小。具体来说,K-means算法的执行过程通常包括以下几个步骤:首先,随机选择K个数据点作为初始的簇质心;然后,根据每个数据点与各个簇质心的距离,将其分配给最近的簇;接着,重新计算每个簇的质心,即取簇内所有数据点的平均值作为新的质心;

2024-04-07 15:48:14 40875 275

原创 【机器学习-13】KNN最近邻算法:原理、应用及实现

相似的对象在特征空间中距离相近。具体来说,对于待分类的样本,KNN算法首先计算它与训练集中每个样本之间的距离。然后,算法选取距离最小的K个样本,这些样本被称为“邻居”。最后,根据这些邻居的类别标签,通过投票或加权平均等方式,确定待分类样本的类别。KNN算法的核心在于距离度量,它决定了样本之间的相似度。通过选择合适的距离度量方法,KNN算法能够准确地找出与待分类样本最相似的邻居,从而进行准确的分类。为了演示KNN算法在文本分类中的应用,我们选择了一个公开的文本分类数据集,如20 Newsgroups数据集。

2024-04-04 14:07:06 17759 269

原创 【机器学习-10】主成分分析(PCA)算法:原理、应用与实现

主成分分析(Principal Component Analysis,简称PCA)是一种统计分析方法,它旨在通过正交变换将原始特征空间中的线性相关变量转换为新的线性无关变量,即主成分。这些主成分能够保留原始数据的大部分信息,同时降低数据的维度,使得数据的处理和分析更加高效。PCA的原理基于数据的方差最大化思想。方差代表了数据的离散程度,方差越大,说明数据在该维度上的变化越丰富,所包含的信息也就越多。

2024-03-26 09:58:02 16289 280

原创 【数据可视化-06】--- 北京某平台二手房可视化数据分析

通过对北京某平台二手房数据的可视化分析,我们可以得出以下结论:北京二手房市场的价格呈现出明显的分布特点,不同价格区间的房屋数量和价格水平存在差异。房屋面积在北京二手房市场中也存在一定的分布特点,不同面积区间的房屋数量和面积大小有所差异。北京各区域的二手房分布不均,一些热门区域的房源较多,价格也相对较高。这些分析结果可以为购房者提供有价值的信息和参考,帮助他们更好地了解市场情况,做出明智的购房决策。同时,对于投资者来说,这些数据分析也可以提供市场趋势和投资机会的线索。

2024-03-23 14:38:28 2362 25

原创 【机器学习-08】参数调优宝典:网格搜索与贝叶斯搜索等攻略

在机器学习模型调优的过程中,找到参数的最佳组合与所需的计算时间之间始终存在一个权衡。当面对超参数空间庞大、维度众多时,选择适当的优化方式显得尤为重要。网格搜索提供了一种全面而系统的搜索方法,通过遍历所有可能的参数组合来找到最优解。然而,当参数空间较大时,网格搜索的计算成本会急剧增加,可能导致优化过程耗时过长。随机搜索则通过随机抽样来减少计算量,同时保持一定的全局搜索能力。它能够在有限的计算资源下快速找到性能较好的参数组合,尤其适用于超参数空间较大或计算资源有限的情况。手动调参。

2024-03-22 09:44:45 11839 61

原创 【机器学习-07】逻辑回归(Logistic Regression,LR)算法:原理、应用与实现

对于二分类问题,假设我们有一个数据集,其中包含mmm个样本。每个样本由输入特征向量xxx和对应的实际类别yyy组成。我们希望通过逻辑回归模型来预测样本的类别。假设存在一条直线(或超平面),可以将数据集中的样本完全分开。zθ0θ1x1θ2x2θnxnzθ0​θ1​x1​θ2​x2​θn​xn​其中,zzz表示线性模型的输出,θ0θ1θnθθ0​θ1​θn​θ表示模型的参数,x1x。

2024-03-21 10:36:34 15352 15

原创 【机器学习-06】线性回归(Linear Regression,LR)算法:原理、应用与实现

在【机器学习-01】机器学习一般建模流程yiβ0β1x1βp−1xp−1εii12nyi​β0​β1​x1​...βp−1​xp−1​εi​i12...n上述等式的矩阵形式是yXβεy∈RnX∈Rn∗pβ∈Rpε∈RnyXβεy∈RnX∈Rn∗pβ∈Rpε∈Rn其中 Y 是反应变量, X 是解释变量,β 是参数。

2024-03-20 09:30:59 14691 10

原创 【机器学习-04】最小二乘法(Ordinary Least Square,OLS):原理、推导与实现

最小二乘法推导和python实现

2024-03-18 11:58:42 6271 9

原创 【Pandas】深入解析Pandas中的统计汇总函数`dt.daysinmonth()`

apply在某些情况下,Pandas内置的dt访问器可能无法满足我们的所有需求。此时,我们可以定义自己的函数,并使用apply方法将其应用于日期时间Series。虽然是内置的,但了解如何扩展这一功能仍然很有用。# 假设我们想要获取每个日期是所在月份的第几天和该月份的天数# 应用自定义函数# 将结果合并回DataFrame# 输出结果print(df)

2024-07-24 09:36:38 553 1

原创 【python】Pandas使用大全:从基础到进阶

Pandas是一个功能强大的数据处理库,它提供了丰富的数据结构和操作函数,能够帮助我们高效地进行数据清洗、预处理和分析。从基础的数据创建和查看,到进阶的数据清洗和预处理,再到高级的数据分析和可视化,Pandas都提供了相应的工具和解决方案。通过不断学习和实践,我们可以充分利用Pandas的强大功能,为我们的数据分析工作带来便利和效率。

2024-07-22 16:35:32 874 1

原创 【Python】成功解决500 : Internal Server Error 错误

在Web开发过程中,遇到错误是开发者们常常需要面对的挑战之一。这个错误表明服务器在处理请求时遇到了意外情况,导致它无法生成有效的响应。虽然这个错误本身不提供太多关于问题的具体信息,但通过一系列的诊断和调试步骤,我们通常能够找到并解决问题。本文将详细探讨错误的原因、提供具体的代码示例,并给出多种解决办法,帮助Python Web开发者们成功解决这一常见问题。错误可以由多种原因引起,包括但不限于:假设我们有一个简单的Flask应用,它尝试从数据库中读取数据并返回给用户,但由于某种原因(如数据库连接失败),导致出

2024-07-22 09:21:19 768 1

原创 【Python】成功解决conda创建虚拟环境时出现的CondaHTTPError: HTTP 000 CONNECTION FAILED错误

错误是一个常见但可能由多种原因导致的conda网络问题。在解决此类问题时,首先应当检查网络连接,确保设备能够正常访问外部网络,特别是conda依赖的源服务器。接下来,可以逐一尝试上述提到的解决方案,包括暂时关闭防火墙或安全软件、更换源、清除conda缓存、更新或降级conda版本、强制SSL验证以及设置代理等。

2024-07-21 10:39:03 900 1

原创 【Python】成功解决TypeError: ‘int’ object is not iterable

是一个常见的Python错误,通常由于尝试对整数执行迭代操作而引发。通过检查变量类型、修正逻辑错误、使用正确的API以及使用range()函数等方法,我们可以有效地避免和解决这个错误。在编写Python代码时,保持对变量类型和逻辑结构的清晰理解是非常重要的,这有助于我们编写出更加健壮和可靠的代码。

2024-07-20 14:27:16 1156 1

原创 【Python】已解决ImportError: cannot import name ‘triu’ from ‘scipy.linalg’

在Python中,模块是包含Python代码的文件,而包是一个包含多个模块的目录,这些模块通常具有相似的功能。如果您在机器学习、NLP项目中遇到难题,或者对某个算法和模型有疑问,欢迎随时联系我,我会尽我所能为您提供帮助,个人微信(xf982831907),添加说明来意。我坚信知识的力量,希望通过我的分享,能够帮助更多的人掌握这些技术,并在实际项目中发挥作用。此外,这个错误也提醒我们在遇到导入错误时,应该首先检查官方文档或在线资源,确认我们尝试导入的函数或类确实存在于我们想要从中导入的模块中。

2024-07-18 16:31:51 902 1

原创 【Python】已解决“ERROR: No matching distribution found for numpy==1.26.0

如果你尝试安装的NumPy版本与你的Python版本不兼容,pip将找不到匹配的发行版。如果你经常遇到与pip相关的依赖问题,或者你的项目需要多个科学计算库,考虑使用conda(一个开源的包、依赖和环境管理器)来管理你的Python环境和依赖。如果你的系统上安装了多个Python版本或使用了不同的Python解释器(如Anaconda、Miniconda等),请确保你正在使用正确的pip版本与相应的Python环境关联。在极少数情况下,PyPI上可能确实不存在你尝试安装的特定版本的包。

2024-07-17 17:42:41 1113 1

原创 【Pandas】深入解析Pandas中的统计汇总函数`dt.dayofyear()`

是Pandas中Series对象的一个属性方法,用于提取datetime64类型Series中每个日期时间是一年中的第几天。这个函数非常适用于需要进行时间序列分析或季节性数据处理的场景。返回值是一个新的Series,其中包含了原始日期时间数据中的“一年中的第几天”信息。

2024-07-16 08:55:31 632 1

原创 【Pandas】深入解析Pandas中的统计汇总函数`dt.week()`

dt.week()是Pandas中Series对象(当该Series包含datetime类型的数据时)的一个属性访问器,用于获取每个日期所在年份的周数。这个周数通常基于ISO 8601标准,即周一为每周的第一天,并且每年的第一周是包含该年第一个周四的那个周。虽然dt.week()默认使用ISO 8601标准(即周一为每周的第一天),但在某些情况下,你可能需要按照其他标准(如周日为每周第一天)来计算周数。Pandas没有直接提供改变周起始日的参数,但你可以通过一些间接的方法来实现这一需求。解决办法。

2024-07-15 15:15:42 848 1

原创 【Python】成功解决“‘OpenpyxlWriter’ object has no attribute ‘save’”

如果您在机器学习、NLP项目中遇到难题,或者对某个算法和模型有疑问,欢迎随时联系我,我会尽我所能为您提供帮助,个人微信(xf982831907),添加说明来意。多年的Python编程和机器学习实践,使我深入理解了这些技术的核心原理,并能够在实际项目中灵活应用。我坚信知识的力量,希望通过我的分享,能够帮助更多的人掌握这些技术,并在实际项目中发挥作用。本文将深入探讨这个错误的根源,并提供详细的解决方案和示例代码,帮助你成功避免并解决这个问题。库的结合使用极为普遍,尤其是在处理Excel文件时。

2024-07-14 15:25:49 889 1

原创 我的创作纪念日

于是,我踏上了创作的道路,希望通过我的文章,将那些实战中的智慧结晶传递给更多人,同时也将日常学习过程中的点滴心得记录下来,作为自己成长的见证。因此,我学会了合理安排时间,确保在完成工作任务和学习计划的同时,也能为创作留出足够的空间。同时,我也期待能够通过我的文章和作品,影响和帮助更多的人,让他们在技术成长的道路上少走弯路,更快地达到自己的目标。

2024-07-14 15:20:05 307 1

原创 【Pandas】深入解析Pandas中的统计汇总函数`dt.weekday_name()`

是 Pandas 中用于获取日期时间索引(DatetimeIndex)或日期时间序列(datetime64 类型)中每个元素的星期几名称的函数。该函数返回的是星期的英文名称,比如 “Monday”, “Tuesday” 等。这个函数非常有用,尤其是在进行数据可视化或报告生成时,需要明确知道每个日期是星期几。

2024-07-13 13:04:02 972 2

原创 AttributeError: ‘str’ object has no attribute ‘get’

当遇到这样的错误时,首先要检查的是你是否错误地将一个字符串当作了字典或其他具有get方法的对象。这通常发生在处理来自外部数据源(如JSON、XML等)的数据时,如果解析过程不正确或数据格式与预期不符,就可能导致这种错误。解决这个问题的关键在于确保数据被正确解析为Python的数据结构,并在处理数据时添加适当的错误处理和类型检查。通过使用来解析JSON字符串,以及编写辅助函数来安全地访问嵌套数据,我们可以有效地避免这类错误,并使代码更加健壮和易于维护。

2024-07-13 13:01:42 1336

原创 【Python】成功解决AttributeError: ‘list’ object has no attribute ‘replace’

通过上面的分析,我们了解到错误的原因在于尝试在列表上使用仅适用于字符串的.replace()方法。解决这个问题的方法包括使用列表推导式、map()函数、循环遍历以及处理嵌套列表或字符串中的替换。选择哪种方法取决于你的具体需求和个人偏好。在Python编程中,理解数据类型的差异和它们支持的方法是非常重要的。这不仅能帮助你避免此类错误,还能让你的代码更加清晰、高效。希望这篇文章能帮助你更好地理解和解决这个常见的Python问题。

2024-07-12 17:19:52 1236 1

原创 【Python】成功解决AttributeError: ‘numpy.ndarray’ object has no attribute ‘value_counts’

在Python的数据分析和处理中,NumPy和Pandas是两个极其常用的库。NumPy主要用于高效的数值计算,而Pandas则提供了高级的数据结构和数据分析工具。然而,在使用这两个库时,我们可能会遇到一些常见的错误,比如。这个错误通常发生在尝试对NumPy数组使用Pandas的方法时。本文将详细解释这个错误的原因,提供具体的代码示例,并给出几种有效的解决办法。

2024-07-11 19:37:45 1420 1

原创 【Python】成功解决FileNotFoundError: [Errno 2] No such file or directory: ‘xxx‘

是一个常见的Python异常,但它通常可以通过仔细检查文件路径、验证当前工作目录、检查文件权限以及确保文件存在等步骤来解决。在开发过程中,注意这些常见错误源,并使用合适的工具和策略来预防和诊断问题,将大大提高你的开发效率和程序的健壮性。希望本文提供的代码示例、原因分析和解决办法能够帮助你成功解决,并在未来的Python编程中避免类似的错误。

2024-07-10 14:54:49 3675 1

葡萄牙银行的电话营销数据

银行客户是否会开设定期存款账户

2024-06-29

信用卡欺诈检测数据集,和机器学习特征筛选:提升模型性能的关键步骤中的特征筛选代码案列

信用卡欺诈检测数据集,和”【机器学习】特征筛选:提升模型性能的关键步骤“中的特征筛选代码案列

2024-04-22

机器学习/数据挖掘/数据分析 + pyecharts/seaborn/matplotlib + 二手房分析 + 数据可视化展示

资源描述: 本资源为机器学习、数据挖掘和数据分析领域的项目,旨在通过使用Python库(包括pyecharts、seaborn和matplotlib)对二手房数据进行分析和可视化展示。 项目的主要目标是挖掘二手房数据背后的隐藏信息,并通过数据可视化的方式呈现这些信息,以便更好地理解和解释二手房市场的特点和趋势。 在这个项目中,我们使用了pyecharts库来生成各种图表和图形,包括动态图、地理图和热力图等,以展示二手房数据的空间分布和变化趋势。pyecharts基于百度开源的Echarts图表库,提供了丰富的图表类型和交互功能,使得数据的可视化呈现更加生动和具有吸引力。 同时,我们还使用了seaborn和matplotlib库来绘制统计图表、直方图、箱线图等,以及进行数据探索和分析。这些库提供了丰富的数据可视化工具和函数,使得我们能够更好地理解数据的分布、关系和趋势。 通过使用这些库和工具,我们可以对二手房数据进行处理、清洗、分析和可视化,从而揭示出二手房市场的一些重要特征,如价格分布、地区分布、房型偏好等。

2024-03-23

机器学习 推荐系统 相似度计算

西雅图酒店数据集,基于用户选择的酒店,为其推荐相似度高的Top10个其他酒店。

2024-03-13

机器学习 + lightgbm/贝叶斯优化/k折交叉验证 + 基于贝叶斯最优化过程 + 优化模型的代码

资源描述 内容概要 本资源提供了基于LightGBM模型的贝叶斯优化过程的代码实现。通过使用贝叶斯优化算法,本代码可以高效地调整LightGBM模型的超参数,以达到优化模型性能的目的。同时,代码中还集成了k折交叉验证机制,以更准确地评估模型性能,并减少过拟合的风险。 适用人群 机器学习爱好者与从业者 数据科学家 数据分析师 对LightGBM模型和贝叶斯优化算法感兴趣的研究者 使用场景及目标 当需要使用LightGBM模型解决分类或回归问题时,可以使用本资源中的代码进行模型超参数的优化。 希望通过自动化手段调整模型参数,以提高模型预测精度或降低计算成本的场景。 在模型开发过程中,需要快速找到最优超参数组合,以加快模型开发进度。 其他说明 代码使用了Python编程语言,并依赖于LightGBM、Scikit-learn等机器学习库。 代码中提供了详细的注释和说明,方便用户理解和使用。 用户可以根据自身需求,修改代码中的参数和配置,以适应不同的应用场景。

2024-03-08

机器学习/工业制造 + ML/xgboost + 异烟酸在生成过程中的各个参数的优化来预测最终的收率

内容概要: 本资源包含异烟酸生成过程中各个参数的优化数据集及相应的预测代码。数据集详细记录了不同生产条件下的异烟酸生成参数,如温度、压力、反应物浓度等,以及对应的最终收率。同时,提供了基于机器学习的预测模型代码,用于根据给定参数预测异烟酸的收率。通过此资源,用户可以深入了解异烟酸生成过程中的参数影响,优化生产条件,提高收率。 适用人群: 化学工程及工艺领域的研究人员 化工企业技术人员 数据分析师和机器学习爱好者 使用场景及目标: 在实验室研究阶段,通过调整数据集中的参数,观察收率变化,为优化实验条件提供依据。 在工业生产中,利用预测模型对生产条件进行快速评估,找到最佳生产参数组合,提高异烟酸的收率。 在教学培训中,作为案例素材,帮助学生理解化学工程中的参数优化及机器学习应用。 其他说明: 数据集已经过预处理和标准化,方便用户直接使用。 预测代码基于Python编写,使用了常用的机器学习库,易于理解和修改。 本资源提供免费下载和使用,但请尊重原创,不得用于商业盈利。

2024-03-07

机器学习 + lightgbm/网格搜索交叉验证 + 贷款违约预测(二分类模型) + 预测一个用户是否会产生违约

内容概要: 本数据集专注于贷款违约预测问题,包含了大量借款人的个人信息、财务状况等多元数据。旨在帮助研究者、金融机构和数据分析师更准确地预测贷款违约风险,为贷款审批、风险管理和信用评估提供有力支持。 适用人群: 金融风控领域的研究人员、金融机构信贷部门人员、数据分析师与机器学习工程师。 使用场景及目标: 贷款审批流程优化:通过模型预测,快速识别潜在的高风险借款人,提高审批效率,减少不良贷款的发生。 风险预警与监控:实时监控借款人的信用状况变化,对可能出现违约的借款人进行及时预警,采取相应的风险控制措施。 信用评分系统开发:基于数据集构建信用评分模型,为借款人提供客观、公正的信用评分,辅助金融机构进行贷款定价和额度设定。 其他说明: 数据集已经过脱敏处理,确保个人隐私信息安全。

2024-03-07

深度学习/NLP + BERT-CRF + 实体识别 + 医学糖尿病数据命名实体识别

内容概要: 医学糖尿病数据命名实体识别项目是一个专注于从医学文本中自动识别和提取与糖尿病相关的命名实体的项目。该项目包括一个经过精心标注的糖尿病数据集,该数据集涵盖了各种医学文献和临床记录中的糖尿病相关术语,如疾病名称、症状、药物、检查项目等。此外,项目还提供了一套实现代码,用于训练命名实体识别模型,并对新的医学文本进行自动标注。 适用人群: 本资源适用于对医学自然语言处理(NLP)感兴趣的研究人员、数据科学家、医学专家以及开发者。 使用场景及目标: 医学文献挖掘、临床决策支持、药物研发与监管; 其他说明: 数据集说明:数据集经过专业医学人员的标注和审核,确保标注的准确性和一致性。同时,数据集的规模和多样性也经过精心设计,以满足不同应用场景的需求。 实现代码说明:代码采用主流的深度学习框架编写,具有良好的可扩展性和可定制性。用户可以根据自己的需求对代码进行修改和优化,以适应不同的任务和数据集。 使用指南:项目提供详细的使用指南和技术文档,帮助用户快速上手和使用本资源。

2024-03-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除