- 博客(592)
- 收藏
- 关注
原创 【数据可视化-124】亚足联男足排名可视化分析:炫酷数据大屏展示
通过本次深度可视化分析,我们全面揭示了亚足联男足的实力格局和发展态势。黑色背景下的多彩图表不仅提升了数据展示的科技感和视觉冲击力,更重要的是通过6种不同的视角帮助我们深入理解亚洲足球的竞争格局。。
2025-10-18 16:25:04
662
1
原创 【数据可视化-123】2010-2025年7月的黄山风景区客流量深度分析:炫酷可视化大屏展示
通过本次深度可视化分析,我们全面揭示了黄山风景区客流量的发展规律和季节性特征。黑色背景下的多彩图表不仅提升了数据展示的科技感和视觉冲击力,更重要的是通过6种不同的视角帮助我们深入理解客流变化的内在规律。
2025-10-17 11:16:23
825
1
原创 【数据可视化-122】2005-2024年中国普通高校数量演变分析:数据可视化解读
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-10-16 10:57:16
781
原创 【数据可视化-121】白酒双雄对决:五粮液VS山西汾酒 - 财务数据深度可视化分析
本次使用的数据如下:# 计算增长率df['五粮液营收增长率'] = df['五粮液营业总收入'].pct_change() * 100df['山西汾酒营收增长率'] = df['山西汾酒营业总收入'].pct_change() * 100df['五粮液净利增长率'] = df['五粮液净利润'].pct_change() * 100df['山西汾酒净利增长率'] = df['山西汾酒净利润'].pct_change() * 100# 设置炫酷颜色。
2025-10-13 11:03:58
1022
4
原创 【数据可视化-120】2024年江苏省GDP数据可视化大屏:炫酷多维度分析
这个可视化大屏不仅展示了2024年江苏省各市的GDP数据,更重要的是通过5种不同的图表类型,从多个维度对数据进行深度解读。每种图表都有其独特的分析视角和视觉表现,共同构成了一个完整的数据分析故事。
2025-10-13 10:48:27
992
原创 【数据可视化-119】江苏省近十年各市GDP变化趋势可视化:Python + Pyecharts打造炫酷水平柱状图
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-10-13 10:44:50
618
原创 【数据可视化-118】江苏省近十年各市GDP变化趋势可视化:Python + Pyecharts打造炫酷时间轴地图
通过Python和Pyecharts,我们成功创建了一个炫酷的江苏省各市GDP变化时间轴地图。这个项目不仅展示了时间序列数据的可视化,还通过地图的形式让数据更加直观和易于理解。希望这篇文章能为数据分析和可视化的爱好者提供一些灵感和参考!
2025-10-04 11:08:02
1240
1
原创 【数据可视化-117】2025苏超常规赛最终战绩数据分析与可视化:Python + Pyecharts打造炫酷大屏
通过Python和Pyecharts,我们成功打造了一个炫酷的可视化大屏,全面展示了2025苏超常规赛的数据分析结果。从积分雷达图到进球失球对比图,从胜场数占比饼图到胜率图表,再到积分地图,每个图表都以炫酷的视觉效果和直观的数据展示,帮助我们深入分析各球队的表现。希望这篇文章能为数据分析和可视化的爱好者提供一些灵感和参考!
2025-10-03 23:25:13
794
原创 【python报错】成功解决pip安装pytorch时出现ectTimeoutError超时报错
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-25 16:10:18
1233
1
原创 【机器学习特征工程系列-09】相关性分析:如何发现特征之间的关系
相关性分析是特征工程中的一个重要环节,通过相关性分析,我们可以发现特征之间的关系,从而选择出对模型最有帮助的特征,提高模型的性能和可解释性。本文展示了多种相关性分析方法,包括皮尔逊相关系数、斯皮尔曼相关系数和卡方检验。选择哪种方法取决于具体的数据特性和模型需求。
2025-09-25 14:38:54
1097
原创 【机器学习特征工程系列-08】特征选择:为什么它能提升模型性能?
特征选择是特征工程中的一个重要环节,通过特征选择,我们可以从大量的特征中选择出对模型最有帮助的特征,从而提高模型的性能和泛化能力。本文展示了多种特征选择方法,包括基于模型的特征选择、基于统计的特征选择、递归特征消除和L1正则化。选择哪种方法取决于具体的数据特性和模型需求。
2025-09-25 14:38:27
868
原创 【机器学习特征工程系列-07】特征构造:如何从原始数据中提取更多信息?
特征构造是特征工程中的一个重要环节,通过特征构造,我们可以从原始数据中提取更多的信息,从而提高模型的性能。本文展示了多种特征构造方法,包括多项式特征构造、交互特征构造、时间特征构造、文本特征构造和图像特征构造。选择哪种方法取决于具体的数据特性和模型需求。
2025-09-25 14:37:59
1255
原创 【机器学习特征工程系列-05】数据标准化:为什么它对模型如此重要?
数据标准化是特征工程中的一个重要步骤,它可以帮助我们提高模型的性能和训练效率。通过Min-Max标准化和Z-Score标准化,我们可以将数据转换为统一的尺度,从而减少特征之间的量纲差异。希望本文能帮助你更好地理解和掌握数据标准化的方法和技巧。
2025-09-21 13:10:15
1032
原创 【机器学习特征工程系列-06】特征编码:分类特征的处理方法
分类特征编码是特征工程中的一个重要步骤,不同的编码方法适用于不同的情况。Label Encoding 简单直观,但可能会引入类别之间的顺序关系;One-Hot Encoding 可以避免顺序关系问题,但会增加数据的维度;Binary Encoding 可以减少数据的维度,同时保留类别之间的关系;Frequency Encoding 可以保留类别之间的频率关系,但可能会引入噪声;Target Encoding 可以保留类别与目标变量之间的关系,但可能会导致过拟合。
2025-09-21 13:09:25
1320
原创 【机器学习特征工程系列-04】数据清洗:处理缺失值的实用技巧
处理缺失值是数据清洗中的一个重要步骤,不同的方法适用于不同的情况。删除缺失值是最简单的方法,但可能会导致数据量减少。填充缺失值可以保持数据量,但需要根据数据的特性和分布选择合适的填充方法。对于复杂的缺失值问题,可以使用机器学习模型来预测缺失值。希望本文能帮助你更好地理解和掌握处理缺失值的方法和技巧。在接下来的系列文章中,我们将继续深入探讨特征工程的其他环节,如特征选择、特征构造和特征降维。敬请期待!
2025-09-21 10:31:58
1023
原创 【机器学习特征工程系列-03】Python实战:如何加载和预览数据?
加载和预览数据是机器学习流程中的第一步,也是至关重要的一步。通过使用pandas库加载数据,并使用各种方法对数据进行初步的探索性分析,我们可以更好地理解数据的结构和特性,从而为后续的数据预处理和特征工程打下坚实的基础。希望本文能帮助你更好地掌握加载和预览数据的方法和技巧。
2025-09-17 13:45:27
1166
原创 【机器学习特征工程系列-02】特征重要性:为什么它对模型至关重要?
特征重要性是指每个特征在模型中的贡献程度。不同的模型有不同的方法来评估特征重要性。例如,决策树模型可以通过特征分裂的次数来评估特征重要性,而线性模型可以通过特征的系数大小来评估特征重要性。特征重要性是评估特征对模型预测能力贡献的一个关键指标。通过评估特征重要性,我们可以选择对模型最有帮助的特征,从而提高模型的性能、减少计算成本并提高模型的可解释性。在本文中,我们展示了如何使用随机森林、方差分析和XGBoost来评估特征重要性。希望这些方法能帮助你在实际项目中更好地理解和应用特征重要性。
2025-09-17 13:44:45
924
原创 【机器学习特征工程系列-01】数据预处理:特征工程的第一步
数据预处理是特征工程的第一步,也是至关重要的一步。通过数据清洗、数据标准化和特征编码,我们可以将原始数据转换为适合模型输入的形式,从而提高模型的性能和最终效果。希望本文能帮助你更好地理解和掌握数据预处理的方法和技巧。在接下来的系列文章中,我们将继续深入探讨特征工程的其他环节,如特征选择、特征构造和特征降维。敬请期待!
2025-09-14 17:12:39
1189
原创 【机器学习特征工程系列-00】机器学习新手必读:特征工程入门指南
特征工程是机器学习中一个极其重要的环节,它可以帮助我们提高模型的性能、减少数据噪声和提升模型的解释性。通过数据预处理、特征选择、特征构造和特征降维等步骤,我们可以将原始数据转换为更有意义的特征,从而构建出更高效的机器学习模型。希望本文能帮助你更好地理解和掌握特征工程的基本概念和操作方法。在实际项目中,特征工程需要根据具体问题进行灵活应用,不断尝试和优化,才能找到最适合的特征工程方案。
2025-09-13 20:49:59
1130
原创 【数据可视化-116】全球假期排行榜可视化分析:探索世界各国的工作与生活平衡(中国排名倒数第七)
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-12 16:57:09
803
原创 【数据可视化-115】PyEcharts桑基图绘制指南:理论与电商案例全解读
桑基图是一种特殊的流图,它通过宽度来表示流量的大小,线条的宽度与流量成正比。这种图表非常适合展示数据的流向和转换关系,例如能源流向、资金流动、用户转化等。直观的流量表示:通过线条的宽度直观地展示流量大小。清晰的流向展示:清晰地展示数据从一个节点流向另一个节点的过程。丰富的交互功能:支持鼠标悬停、点击等交互操作,增强用户体验。通过本文,你已经了解了如何使用 PyEcharts 绘制桑基图,包括数据格式、代码实现以及一个具体的案例。
2025-09-12 16:55:33
1019
原创 【数据可视化-114】2025年7月SUV销量排名榜Top100数据分析:用Python和Pyecharts打造炫酷可视化大屏
本文使用Python和PyEcharts创建了2025年7月SUV销量Top100的可视化大屏,包含六个维度的分析图表。所有图表采用黑色背景和炫酷配色,提供了直观的数据洞察。通过这种可视化分析,我们可以更直观地理解SUV市场的竞争格局、价格分布和品牌表现,为汽车行业相关决策提供数据支持。
2025-09-12 16:54:12
1028
原创 【数据可视化-113】2024年黄山市(我的老家)各区县GDP数据分析::用Python和Pyecharts打造炫酷可视化大屏
本文使用Python和PyEcharts创建了2024年黄山市各区县GDP的可视化大屏,包含七种不同类型的图表。所有图表采用黑色背景和炫酷配色,提供了直观的数据洞察。通过这种可视化分析,我们可以更直观地理解黄山市各区县的经济发展状况和区域差异,为相关决策提供数据支持。
2025-09-12 16:52:40
1233
原创 【数据可视化-112】使用PyEcharts绘制TreeMap(矩形树图)完全指南及电商销售数据TreeMap绘制实战
TreeMap是一种有效的空间填充可视化方法,特别适合展示具有层次结构的大规模数据。它能够同时显示数据的层次关系和数值大小,广泛应用于文件大小分析、市场份额展示、资源配置等领域。TreeMap是一种强大的数据可视化工具,特别适合展示层次结构数据和比例关系。PyEcharts提供了丰富的配置选项,可以创建高度定制化的TreeMap图表。TreeMap数据可以是扁平结构或层次结构可以使用label_opts配置标签显示方式可以使用levels参数为不同层级配置不同样式可以使用实现数据到颜色的映射。
2025-09-12 16:50:37
755
原创 【数据可视化-111】93大阅兵后的军费开支情况———2024年全球军费开支分析:用Python和Pyecharts打造炫酷可视化大屏
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-09 10:40:36
1159
原创 【数据可视化-110】Pyecharts中的Timeline时间轴:动态数据可视化指南
Pyecharts 是一个用于生成 Echarts 图表的 Python 库,它提供了丰富的图表类型和灵活的配置选项。Timeline 是 Pyecharts 的一个组件,它允许用户沿着时间轴查看数据的不同状态。通过使用Pyecharts的Timeline组件,我们可以轻松地创建展示数据随时间变化的趋势。这种类型的图表特别适合展示时间序列数据,如股票价格、销售额、用户增长等。希望这个示例能帮助你更好地理解和使用Pyecharts的Timeline功能。
2025-09-09 10:37:50
962
原创 【数据可视化-109】2025年各省本科录取率分析:用Python和Pyecharts打造炫酷可视化大屏
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-06 20:57:15
715
原创 【数据可视化-108】2025年6月新能源汽车零售销量TOP10车企分析大屏(PyEcharts炫酷黑色主题可视化)
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-04 14:55:14
1242
原创 【数据可视化-107】2025年1-7月全国出口总额Top 10省市数据分析:用Python和Pyecharts打造炫酷可视化大屏
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-04 14:47:55
1662
原创 【数据可视化-106】华为2025上半年财报分析:用Python和Pyecharts打造炫酷可视化大屏
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-04 14:46:34
1219
原创 【数据可视化-105】Pyecharts主题组件:让你的图表瞬间高大上
Pyecharts 提供了多种预设主题,每种主题都有其独特的风格和配色方案。这些主题可以帮助我们快速地改变图表的外观,而无需手动调整每个图表的样式。default:默认主题light:浅色主题dark:深色主题chalk:粉笔风格主题essos:冰与火之歌风格主题infographic:信息图表风格主题macarons:马卡龙风格主题purple-passion:紫色激情主题roma:罗马风格主题romantic:浪漫风格主题shine:闪耀风格主题。
2025-09-01 22:38:04
1004
原创 【数据可视化-104】安徽省2025年上半年GDP数据可视化分析:用Python和Pyecharts打造炫酷大屏
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-01 22:36:25
962
原创 【数据可视化-103】蜜雪冰城门店分布大揭秘:2025年8月数据分析及可视化
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-01 22:34:12
1492
1
原创 【数据可视化-102】苏州大学招生计划全解析:数据可视化的五大维度
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。
2025-09-01 22:32:19
927
原创 【数据可视化-101】中科大2025年分省招生计划:安徽15%,不给老乡开后门,才叫真正的公平
省市招生计划占比安徽1920.14964926广东92浙江70中科大小而精,除安徽招生192人和河南招生104人之外,其他省份招生人数都少于100人。
2025-08-27 15:43:10
1193
1
原创 【数据可视化-100】使用 Pyecharts 绘制人口迁徙图:步骤与数据组织形式
人口迁徙图是一种展示人口流动情况的可视化图表,通常用于分析人口迁移的来源地和目的地。pyecharts是一个强大的 Python 数据可视化库,支持多种图表类型,包括地图和地理坐标系,非常适合绘制人口迁徙图。
2025-08-25 17:04:14
1053
1
原创 【数据可视化-99】2025 年各地区夏粮产量可视化分析:Python + pyecharts打造炫酷暗黑主题大屏
区域差异明显:河南和山东的夏粮总产量最高,而海南和宁夏的总产量相对较低。这表明不同地区的农业发展水平存在差异。单位面积产量差异:上海的单位面积产量最高,而广西的单位面积产量相对较低。这表明不同地区的农业生产效率存在差异。总产量分布:河南和山东的总产量占比较高,而海南和宁夏的总产量占比较低。这表明不同地区的粮食生产贡献存在差异。总产量的省份词云图:通过词云图,我们可以直观地看到各地区的总产量差异,总产量较高的省份词云较大,而总产量较低的省份词云较小。
2025-08-25 15:38:02
1201
原创 【数据可视化-98】2025年上半年地方财政收入Top 20城市可视化分析:Python + Pyecharts打造炫酷暗黑主题大屏
收入对比:上海市和北京市的财政收入最高,分别为4684.4亿元和3571.2亿元。收入占比:上海市和北京市的财政收入占比较高,分别占到了较大的比例。增速走势:深圳市和北京市的增速较高,分别为3.4%和2.6%。增速分级:大部分城市的增速为正增长,少数城市为负增长。城市词云:上海市和北京市的词云较大,表明这两个城市的财政收入较高。总之,通过对财政收入数据的可视化分析,我们可以更好地了解各城市的财政收入水平,为制定相关政策提供参考依据。
2025-08-25 14:58:40
787
原创 【数据可视化-97】2024年人均薪酬最高Top 100公司可视化分析Python + pyecharts打造炫酷暗黑主题大屏
薪酬差异:不同公司的人均薪酬存在显著差异,部分公司人均薪酬远高于其他公司。行业差异:不同行业的公司在人均薪酬上也存在差异,某些行业可能更倾向于支付高薪。行业分布:通过漏斗图,我们可以直观地看到各所属行业的分布情况。总之,通过对人均薪酬数据的可视化分析,我们可以更好地了解各公司的薪酬水平,为制定相关政策提供参考依据。
2025-08-25 14:56:19
835
原创 【数据可视化-96】使用 Pyecharts 绘制主题河流图(ThemeRiver):步骤与数据组织形式
本文详细介绍了如何使用 Pyecharts 绘制主题河流图,并重点介绍了主题河流图的数据组织形式。通过嵌套的列表结构,我们可以轻松地组织和展示多个时间序列数据。主题河流图不仅美观,而且非常直观,特别适合展示多个时间序列数据的动态变化。
2025-08-21 22:41:02
906
信用卡欺诈检测数据集,和机器学习特征筛选:提升模型性能的关键步骤中的特征筛选代码案列
2024-04-22
机器学习/数据挖掘/数据分析 + pyecharts/seaborn/matplotlib + 二手房分析 + 数据可视化展示
2024-03-23
机器学习 + lightgbm/贝叶斯优化/k折交叉验证 + 基于贝叶斯最优化过程 + 优化模型的代码
2024-03-08
机器学习/工业制造 + ML/xgboost + 异烟酸在生成过程中的各个参数的优化来预测最终的收率
2024-03-07
机器学习 + lightgbm/网格搜索交叉验证 + 贷款违约预测(二分类模型) + 预测一个用户是否会产生违约
2024-03-07
深度学习/NLP + BERT-CRF + 实体识别 + 医学糖尿病数据命名实体识别
2024-03-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人