嘿,游戏运营的小伙伴们!想象一下,咱们的游戏就像一艘在数据海洋中航行的巨轮,日活跃用户数(DAU)就是那指引航向的罗盘。在这片充满变数的海洋里,数据的每一次波动都可能是暗藏的礁石或者顺风的助力。今天,我就来跟大家分享一下我在游戏日活数据预警可视化这场大冒险中的通关秘籍。
1. 指标理解DAU/CV:游戏巨轮的 “导航神器”
咱们先来说说这个日活跃用户数(DAU),它就像是游戏世界里的 “人气温度计”。每天有多少玩家欢快地涌入我们的游戏世界,DAU 都能精准记录。而变异系数呢,它就像是一个 “波动探测器”,能告诉我们这个 “人气温度计” 的数值跳动得是不是太离谱了。比如说,要是变异系数突然飙升,那就好比温度计的水银柱疯狂上升,肯定是有啥情况在悄悄发生啦!
变异系数(CV)是标准差与均值的比值,用于衡量数据的相对离散程度,通过计算日活跃用户数的变异系数,可以了解数据相对于均值的波动幅度。
-
评估游戏稳定性:稳定的日活跃用户数是游戏健康发展的重要标志。通过分析日活跃用户数的变异系数,可以判断游戏用户活跃度的稳定程度。如果变异系数较小,说明日活跃用户数相对稳定,游戏运营状况良好;反之,如果变异系数较大,则表明用户活跃度波动较大,可能存在一些影响用户体验的因素需要进一步排查。
-
预警异常波动:设定合理的变异系数阈值,当实际计算得到的变异系数超出阈值范围时,及时发出预警。这有助于运营团队迅速发现游戏运营中的异常情况,如服务器故障、新活动效果不佳或竞争对手推出类似游戏等,以便及时采取相应的措施进行调整。
-
辅助运营决策:结合日活跃用户数和变异系数的变化趋势,运营团队可以制定更有针对性的运营策略。例如,在日活跃用户数下降且变异系数增大时,可以考虑推出新的活动或优化游戏内容,以提高用户的参与度和留存率。
2. DAU分布
在进行后续的分析之前,首先看一下DAU是否可以近似为正态分布,从而决定后续是否要用变异系数进行数据预警指标。
正态分布代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# 读取 Excel 文件
file_path = r'C:\Users\Desktop\data.xlsx'
df = pd.read_excel(file_path)
# 提取时间序列数据(假设数据在 'Value' 列)
time_series = df['dau']
# 计算数据的均值和标准差
mu, std = norm.fit(time_series)
# 绘制直方图
plt.hist(time_series, bins=30, density=True, alpha=0.6, color='g')
# 绘制拟合的正态分布曲线
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=2)
plt.title(f'Fit Results: mu = {mu:.2f}, std = {std:.2f}')
plt.show()
可以看到数据确实比较接近正态分布。
3. 指标异动分析-与7日平均数据对比
问题1:日期格式解析问题
在读取数据时,日期列包含了额外的星期信息,如 2024-11-22(五)
,这导致 pandas
在使用 pd.to_datetime
函数进行日期转换时出现错误。为了解决这个问题,我采用正则表达式去掉额外信息。
data['date'] = data['date'].str.replace(r'\(.*?\)', '', regex=True)
data['date'] = pd.to_datetime(data['date'])
问题2:预警点可视化问题
刚开始想使用椭圆圈出预警点,但我希望只在预警的地方画一个红色的点。为此,我使用 plt.scatter()
函数替代了绘制椭圆的操作。
alert_data = data[data['alert']]
plt.scatter(alert_data['date'], alert_data['dau'], color='red', label='Alert Points')
完整代码如下:
import pandas as pd
# 读取数据
from matplotlib import pyplot as plt
from matplotlib.patches import Ellipse
file_path = r'C:\Users\data.xlsx'
data = pd.read_excel(file_path)
# 将日期列转换为日期时间类型
# 去除括号及其中的内容
data['date'] = data['date'].str.replace(r'\(.*?\)', '', regex=True)
data['date'] = pd.to_datetime(data['date'])
# 按日期排序
data = data.sort_values(by='date')
# 假设我们要分析最近 7 天的数据
window_size = 7
data['rolling_mean'] = data['dau'].rolling(window=window_size).mean()
data['rolling_std'] = data['dau'].rolling(window=window_size).std()
data['cv'] = data['rolling_std'] / data['rolling_mean']
# 计算变异系数的均值和标准差
cv_mean = data['cv'].mean()
cv_std = data['cv'].std()
# 设定波动阈值,例如均值加减 2 倍标准差
lower_threshold = cv_mean - 3 * cv_std
upper_threshold = cv_mean + 3 * cv_std
# 计算每天数据与过去 7 日均值的偏差百分比
data['deviation_percentage'] = ((data['dau'] - data['rolling_mean']) / data['rolling_mean']) * 100
# 进行预警判断
data['alert'] = False
data.loc[(data['cv'] < lower_threshold) | (data['cv'] > upper_threshold), 'alert'] = True
# 绘制图表
plt.figure(figsize=(12, 6))
plt.plot(data['date'], data['dau'], label='Daily Active Users', color='blue')
plt.plot(data['date'], data['rolling_mean'], label='7-Day Rolling Mean', color='orange', linestyle='--')
alert_data = data[data['alert']]
plt.scatter(alert_data['date'], alert_data['dau'], color='red', label='Alert Points')
plt.xlabel('Date')
plt.ylabel('Daily Active Users')
plt.title('Game Daily Active Users with Alerts')
plt.legend()
plt.grid(True)
plt.show()
4 总结
通过以上一系列的处理步骤,我成功解决了游戏日活跃用户数据处理、预警判断和可视化展示过程中遇到的问题。从日期格式解析到横坐标显示调整,再到绘图报错处理和预警点可视化优化,每一个问题的解决都让我对数据处理和可视化有了更深入的理解。希望我的经验能够对其他从事游戏运营数据分析的朋友有所帮助。
在实际应用中,我们还可以根据具体需求进一步优化预警规则和可视化效果,例如调整标准差倍数来改变预警阈值,或者添加更多的图表元素来丰富可视化信息。同时,要不断关注数据的变化和业务需求的调整,及时对代码和分析方法进行更新和改进。