CCF-CSP——因子化简

本文介绍了如何编写一个程序来解决一个计算机科学问题,即根据给定的正整数n和一个阈值k,确定n的素因子分解中哪些素因子的指数大于等于k,其余的素因子项被简化去除。程序使用C++实现,包括判断素数和处理查询的功能。
摘要由CSDN通过智能技术生成

目录

一、题目

二、题解


一、题目

链接:

计算机软件能力认证考试系统

题目背景
质数(又称“素数”)是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

问题描述
小 P 同学在学习了素数的概念后得知,任意的正整数 n 都可以唯一地表示为若干素因子相乘的形式。如果正整数 n 有 m 个不同的素数因子 p1,p2,⋯,pm,则可以表示为:n=p1^t1×p2^t2×...×pm^tm。

小 P 认为,每个素因子对应的指数 ti 反映了该素因子对于 n 的重要程度。现设定一个阈值 k,如果某个素因子 pi 对应的指数 ti 小于 k,则认为该素因子不重要,可以将 pi^ti 项从 n 中除去;反之则将 pi^ti 项保留。最终剩余项的乘积就是 n 简化后的值,如果没有剩余项则认为简化后的值等于 1。

试编写程序处理 q 个查询:

每个查询包含两个正整数 n 和 k,要求计算按上述方法将 n 简化后的值。
输入格式
从标准输入读入数据。

输入共 q+1 行。

输入第一行包含一个正整数 q,表示查询的个数。

接下来 q 行每行包含两个正整数 n 和 k,表示一个查询。

输出格式
输出到标准输出。

输出共 q 行。

每行输出一个正整数,表示对应查询的结果。

样例输入

3
2155895064 3
2 2
10000000000 10

样例输出
 

2238728
1
10000000000

二、题解

#include<bits/stdc++.h>
using namespace std;

//判断素数
int isPrime(int x) {
	for (int i = 2; i * i <= x; i++) {
		if (x % i == 0) {
			return 0;
		}
	}
	return 1;
}

void query(long long n, int k) {
	long long temp = n;
	long long final = 1;
	for(int i=2; i * i <= n; i++) {
		if(isPrime(i)){
			int num = 0;
			while(n%i==0){
				n/=i; 
				num++;
			}
//			printf("%d\n", num);
			if(num>=k){
				while(num--){
					final*=i;
				}
			}
		}
	}
	if(final==temp){
		printf("%lld\n", temp);
	}else if(final==1){
		printf("1\n");
	}else{
		printf("%lld\n", final);
	}
}

int main() {
	int q;
	scanf("%d", &q);
	for(int i=0; i<q; i++) {
		long long n;
		int k;
		scanf("%lld%d", &n, &k);
		query(n, k);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞影铠甲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值