概率论与数理统计C复习笔记(上)

该文涵盖了概率论的基础知识,包括概率公理、事件运算、条件概率和乘法规则。讨论了一维随机变量的各种类型,如离散型和连续型,特别提到了泊松分布和正态分布。此外,还涉及了多维随机变量的联合分布、边缘分布以及独立性概念,并介绍了随机变量函数的概率密度函数计算。
摘要由CSDN通过智能技术生成

随机事件与概率 

1. 概率公理

    (1) (非负性) 0\leqslant P(A)\leqslant 1

    (2) (可加性) P(\bigcup_{k=1}^{\infty }A_{k})=\sum_{k=1}^{\infty }P(A_{k})

    (3) (规范性) P(\Omega )=1,P(\varnothing )=0

2. 事件的运算

    (1)\; A\subset B,\; P(A)\leqslant P(B)

    (2)\; A\cup \bar{A}=\Omega \wedge A\cap \bar{A}=\varnothing ,\; P(\bar{A})=1-P(A)

    (3)\; P(A\cup B)=P(A)+P(B)-P(A\cap B)\leqslant P(A)+P(B)

    (4)\; P(A\cup B\cup C)=P(A)+P(\bar{A}\cap B)+P(\bar{A}\cap\bar{B}\cap C)

          P\left(\bigcup_{i=1}^{n}A_{i}\right)\leqslant \sum_{i=1}^{n}P(A_{i})

    (5)\; A-B=A\cap \bar{B}

3. 条件概率与乘法规则

    P(A|B)=\frac{P(A\cap B)}{P(B)}\; (P(B)> 0)

    P(A\cap B)=P(B)P(A|B)

    P(\bigcap_{i=1}^{n}A_{i})=P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1}\cap A_{2})\cdots P(A_{n}|\bigcap_{i=1}^{n-1}A_{i})

4. 全概率公式

    P(A)=\sum_{k=1}^{n}P(A\cap B_{k})=\sum_{k=1}^{n}P(B_{k})P(A|B_{k})    (B_{i}\cap B_{j}=\varnothing ,\; \bigcup_{k=1}^{n}B_{k}=\Omega)

5. 贝叶斯公式

    P(B_{k}|A)=\frac{P(A\cap B_{k})}{P(A)}=\frac{P(B_{k})P(A|B_{k})}{\sum_{i=1}^{n}P(B_{i})P(A|B_{i})}\; (P(A)>0)

6. 独立性与条件独立性

    \left\{\begin{matrix} P(A)=P(A|B)=P(A|\bar{B})\\ P(A\cap B)=P(A)P(B) \end{matrix}\right.

    \left\{\begin{matrix} P(A_{i_{1}})=P(A_{i_{1}}|A_{i_{2}}\cap A_{i_{3}}\cap \cdots \cap A_{i_{n}})\\ \forall S\in \rho (\left \{ 1,2,\cdots ,n \right \}),\; P(\bigcap_{i\in S}^{}A_{i})=\prod_{i\in S}^{}P(A_{i}) \end{matrix}\right.

    \left\{\begin{matrix} P(A\cap B|C)=P(A|C)P(B|C)\\ P(A|B\cap C)=P(A|C) \end{matrix}\right.

随机变量及其概率分布

一维随机变量

离散型随机变量

1. 概率函数与分布列

    p_{i}=P(X=x_{i})\; (i=1,2,\cdots )

    PMF:\; \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{i} & \cdots \\ p_{1} & p_{2} & \cdots & p_{i} & \cdots \end{pmatrix}

2. 分布函数

    F(x)=P(X\leqslant x)=\sum_{\left \{ i|x_{i}\leqslant x \right \}}^{}p_{i}

3. 伯努利分布

    P(X=k)=\left\{\begin{matrix} p, & if\; k=1,\\ 1-p, & if\; k=0. \end{matrix}\right.

4. 二项分布

    X\sim B(n,p):\; P(X=k)=\binom{n}{k}p^{k}(1-p)^{n-k}\; (k=0,1,\cdots,n)

5. 泊松分布

    X\sim P(\lambda ):\; P(X=k)=e^{-\lambda }\frac{\lambda ^{k}}{k!}\; (k=0,1,2,\cdots )

    泊松分布可作为二项分布的极限而得到. 一般来说, 若X~B(n,p), 其中n很大, p很小, 而np=𝜆不太大时, 则X的分布接近于泊松分布P(𝜆).

6. 几何分布

    X\sim G(p):\;P(X=k)=(1-p)^{k-1}p\; (k=1,2,3,\cdots)

7. 超几何分布

    X\sim H(N,M,n):\; P(X=m)=\frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}}\; (0\leqslant m\leqslant M,n-m\leqslant N-M)

    若X~H(N,M,n), 则当n固定时, M/N=p固定; N→∞时, X近似地服从二项分布B(n,p).

连续型随机变量

1. 概率密度函数与分布函数

    f(x)=F'(x)

    F(x)=P(X\leqslant x)=\int_{-\infty }^{x}f(t)dt\; (-\infty<x<+\infty)

    P(a\leqslant X\leqslant b)=F(b)-F(a)=\int_{a}^{b}f(x)dx

    P(X\in L)=\int_{L}^{}f(x)\textup{d}x

2. 均匀分布

    X\sim U(a,b):\; f(x)=\left\{\begin{matrix} \frac{1}{b-a}, & if\; a\leqslant x\leqslant b,\\ 0, & else. \end{matrix}\right.

    F(x)=\left\{\begin{matrix} 0, & if\; x\leqslant a,\\ \frac{x-a}{b-a}, & if\;a<x<b,\\ 1, & if\;x\geqslant b. \end{matrix}\right.

3. 正态分布

    X\sim N(\mu ,\sigma ^{2}):\; f(x)=\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(x-\mu )^{2}}{2\sigma ^{2}}}\; (-\infty<x<+\infty)

    for \;\mu=0, \;\sigma ^{2}=1,\; we\;have\;\varphi (x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}},\; \Phi (x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^{2}}{2}}dt

    if\; X\sim N(\mu,\sigma^{2}),\; then\; Y=\frac{X-\mu}{\sigma}\sim N(0,1)

    P(X\leqslant x)=P\left ( \frac{X-\mu}{\sigma}\leqslant \frac{x-\mu}{\sigma}\right )=P\left(Y\leqslant \frac{x-\mu}{\sigma}\right)=\Phi \left(\frac{x-\mu}{\sigma} \right )\; (Y\sim N(0,1))

    \Phi (x)=1-\Phi (-x)\; (x<0)

4. 指数分布

    f(x)=\left\{\begin{matrix} \lambda e^{-\lambda x}, & if\; x>0,\\ 0, & if\; x\leqslant 0. \end{matrix}\right. \; (\lambda >0)

    F(x)=\left\{\begin{matrix} 0, & if\; x\leqslant 0,\\ 1-e^{-\lambda x}, & if \; x>0. \end{matrix}\right.

5. 威布尔分布

    \frac{F'(x)}{1-F(x)}=\lambda x^{m},\; F(0)=0

    \Rightarrow \; F(x)=1-e^{-\lambda x^{\alpha}}\; (x>0;\alpha=m+1>1,\frac{\lambda}{m+1}\to \lambda);\;F(x)=0\; (x\leqslant 0)

    f(x)=\left\{\begin{matrix} \lambda \alpha x^{\alpha-1}e^{-\lambda x^{\alpha}},& if\; x>0,\\ 0, & if\; x\leqslant 0. \end{matrix}\right.

    指数分布是威布尔分布当𝜶=1时的特例.

多维随机变量

1. (X,Y)的(二维)联合分布函数

    F(x,y)=P(X\leqslant x,Y\leqslant y)\;((x,y)\in \mathbb{R}^{2})

2. (X,Y)关于X和Y的边缘分布函数(F(x,y)的边缘分布函数)

    F_{X}(x)=P(X\leqslant x)=P(X\leqslant x,Y<\infty )=F(x,\infty )

    F_{Y}(y)=P(Y\leqslant y)=P(X<\infty,Y\leqslant y)=F(\infty, y)

二维离散型随机变量

1. 联合分布列

    p_{ij}=P(X=x_{i},Y=y_{j})\;(i,j=1,2,3,\cdots)

Y\\Xy_{1}\cdotsy_{n}P(X=x_{i})=p_{i}(X)
x_{1}p_{11}\cdotsp_{1n}\sum_{j=1}^{n}p_{1j}
\vdots\vdots\ddots\vdots\vdots
x_{n}p_{n1}\cdotsp_{nn}\sum_{j=1}^{n}p_{nj}
P(Y=y_{j})=p_{j}(Y)\sum_{i=1}^{n}p_{i1}\cdots\sum_{i=1}^{n}p_{in}1

2. 边缘分布列

    p_{i}(X)=P(X=x_{i})=\sum_{j\geqslant 1}^{}p_{ij}\;(i\geqslant 1)

    p_{j}(Y)=P(Y=y_{j})=\sum_{i\geqslant 1}^{}p_{ij}\; (j\geqslant 1)

二维连续型随机变量

1. 联合分布函数与联合概率密度函数

    F(x,y)=P(X\leqslant x,Y\leqslant y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)\textup{d}v\textup{d}u\;((x,y)\in \mathbb{R}^{2})

    f(x,y)=\frac{\partial ^{2}F}{\partial x\partial y}(x,y)

    P(a\leqslant X\leqslant b, c\leqslant Y\leqslant d)=\int_{c}^{d}\int_{a}^{b}f(x,y)\textup{d}x\textup{d}y

    P((X,Y)\in D)=\iint_{D}^{}f(x,y)\textup{d}x\textup{d}y

2. 边缘分布函数与边缘概率密度函数

    F_{X}(x)=P(X\leqslant x)=P(X\leqslant x,Y<\infty)=\int_{-\infty}^{x}\int_{-\infty}^{\infty}f(u,v)\textup{d}v\textup{d}u

    F_{X}(x)=\int_{-\infty}^{x}f_{X}(u)\textup{d}u\;\Rightarrow \;f_{X}(x)=\int_{-\infty }^{\infty }f(x,y)dy

    F_{Y}(y)=\int_{-\infty}^{y}\int_{-\infty}^{\infty}f(u,v)\textup{d}u\textup{d}v

    f_{Y}(y)=\int_{-\infty}^{\infty}f(x,y)\textup{d}x

条件概率分布

1. 离散型随机变量的条件分布列

    P(X=x_{i}|Y=y_{j})=\frac{p_{ij}}{p_{j}(Y)}\; (i,j\geqslant 1)

    P(Y=y_{j}|X=x_{i})=\frac{p_{ij}}{p_i(X)}\; (i,j\geqslant 1)

2. 连续型随机变量的条件概率密度函数

    P(X\leqslant x|y_{1}\leqslant Y\leqslant y_{2})=\frac{P(X\leqslant x,y_{1}\leqslant Y\leqslant y_{2})}{P(y_{1}\leqslant Y\leqslant y_{2})} \Rightarrow \;P(X\leqslant x|Y=y)=\lim_{\varepsilon \to 0}P(X\leqslant x|y-\varepsilon \leqslant Y\leqslant y+\varepsilon )=\lim_{\varepsilon \to 0}\frac{P(X\leqslant x,y-\varepsilon \leqslant Y\leqslant y+\varepsilon)}{P(y-\varepsilon \leqslant Y\leqslant y+\varepsilon)}=\lim_{\varepsilon \to 0}\frac{F(x,y+\varepsilon )-F(x,y-\varepsilon )}{F_{Y}(y+\varepsilon )-F_{Y}(y-\varepsilon )}=\lim_{\varepsilon \to 0}\frac{\frac{F(x,y+\varepsilon )-F(x,y-\varepsilon )}{2\varepsilon }}{\frac{F_{Y}(y+\varepsilon )-F_{Y}(y-\varepsilon )}{2\varepsilon }}=\frac{\frac{\partial F(x,y)}{\partial y}}{\frac{\textup{d}F_{Y}(y)}{\textup{d}y}}=\frac{\int_{-\infty }^{x}f(u,y)\textup{d}u}{f_{Y}(y)}=\int_{-\infty}^{x}\frac{f(u,y)}{f_{Y}(y)}\textup{d}u

    f_{X|Y}(x|y)=\frac{f(x,y)}{f_{Y}(y)}    F_{X|Y}(x|y)=\int_{-\infty}^{x}\frac{f(u,y)}{f_{Y}(y)}\textup{d}u

    f_{Y|X}(y|x)=\frac{f(x,y)}{f_{X}(x)}    F_{Y|X}(y|x)=\int_{-\infty}^{y}\frac{f(x,v)}{f_{X}(x)}\textup{d}v

随机变量的独立性

    F(x,y)=F_{X}(x)F_{Y}(y)\; (x,y)\in \mathbb{R}^{2}

1. 离散型随机变量X和Y相互独立的充要条件

    p_{ij}=p_{i}(X)p_{j}(Y)\;(i,j\geqslant 1)

    \left\{\begin{matrix} p_{i}(X)=P(X=x_{i}|Y=y_{j})\\ p_{j}(Y)=P(Y=y_{j}|X=x_{i}) \end{matrix}\right.

2. 连续型随机变量X和Y相互独立的充要条件

    f(x,y)=f_{X}(x)f_{Y}(y)

    \left\{\begin{matrix} f_{X}(x)=f_{X|Y}(x|y)\\ f_{Y}(y)=f_{Y|X}(y|x) \end{matrix}\right.

随机变量函数的概率密度函数

    Z=g(X,Y)

    F_{Z}(z)=P(g(X,Y)\leqslant z)=\iint_{D}^{}f(x,y)\textup{d}x\textup{d}y,\; D=\left \{ (x,y):g(x,y)\leqslant z \right \}

    f_{Z}(z)=\left\{\begin{matrix} F_{Z}^{'}(z), & if\; F_{Z}^{'}(z)\; exists,\\ 0, & if\; F_{Z}^{'}(z)\; does\;not\;exist. \end{matrix}\right.

    OR\; if\; F_{Z}(z)=^{\cdots }\int_{-\infty}^{z}p(u)\textup{d}u,\;f_{Z}(z)=p(z).

1. 两独立连续型随机变量之和(卷积公式)

    Z=X+Y

    P(Z\leqslant z|X=x)=P(X+Y\leqslant z|X=x)=P(x+Y\leqslant z)=P(Y\leqslant z-x)\; \Rightarrow \; f_{Z|X}(z|x)=f_{Y}(z-x)

    f(x,z)=f_{X}(x)f_{Z|X}(z|x)=f_{X}(x)f_{Y}(z-x)

    f_{Z}(z)=\int_{-\infty}^{\infty}f(x,z)\textup{d}x=\int_{-\infty}^{\infty}f_{X}(x)f_{Y}(z-x)\textup{d}x

    or\; f_{Z}(z)=\int_{-\infty}^{\infty}f_{X}(z-y)f_{Y}(y)\textup{d}y

2. 两独立连续型随机变量之差

    Z=X-Y=X+(-Y)

    f_{Z}(z)=\int_{-\infty}^{\infty}f_{X}(x)f_{-Y}(z-x)\textup{d}x=\int_{-\infty}^{\infty}f_{X}(x)f_{Y}(x-z)\textup{d}x

3. 两独立连续型随机变量之商

    Z=\frac{X}{Y} F_{Z}(z)=P(\frac{X}{Y}\leqslant z)=\iint_{\frac{x}{y}\leqslant z}^{}f(x,y)\textup{d}x\textup{d}y=\iint_{x\leqslant zy,y>0}^{}f(x,y)\textup{d}x\textup{d}y+\iint_{x\geqslant zy,y<0}^{}f(x,y)\textup{d}x\textup{d}y=\int_{0}^{\infty}\int_{-\infty}^{zy}f(x,y)\textup{d}x\textup{d}y+\int_{-\infty}^{0}\int_{zy}^{\infty}f(x,y)\textup{d}x\textup{d}y=\int_{-\infty }^{z}\int_{0}^{\infty}yf(uy,y)\textup{d}y\textup{d}u+\int_{z}^{-\infty}\int_{-\infty}^{0}yf(vy,y)\textup{d}y\textup{d}v=\int_{-\infty}^{z}\int_{-\infty}^{\infty}|y|f(uy,y)\textup{d}y\textup{d}u

    f_{Z}(z)=\int_{-\infty}^{\infty}|y|f(zy,y)\textup{d}y=\int_{-\infty}^{\infty}|y|f_{X}(zy)f_{Y}(y)\textup{d}y 

4. 求两连续型随机变量的函数的概率分布的两种方法

    Z=g(X,Y)

    (1)\;F_{Z}(z)=P(Z\leqslant z)=\iint_{D}^{}f(x,y)\textup{d}x\textup{d}y,\; D=\left \{ (x,y):g(x,y)\leqslant z \right \}

          f_{Z}(z)=\frac{\textup{d}F_{Z}}{\textup{d}z}(z)

    (2)\; Z'=h(X,Y),\; (X,Y)\xrightarrow[]{one-to-one}(Z,Z')

          \Rightarrow \; X=s(Z,Z'),\; Y=t(Z,Z')

          f_{ZZ'}(u,v)=f_{XY}(s(u,v),t(u,v))|J(u,v)|

          J(u,v)=\begin{vmatrix}\frac{\partial s}{\partial u} & \frac{\partial s}{\partial v}\\ \frac{\partial t}{\partial u} & \frac{\partial t}{\partial v} \end{vmatrix}\; (\textup{Jacobian Matrix})

          \Rightarrow \; f_{Z}(z)=\int_{-\infty}^{\infty}f_{ZZ'}(z,v)\textup{d}v

Author: Deng ZY

Date: May 1, 2023

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值