数据挖掘与分析
文章平均质量分 60
卷到起飞的数分
这个作者很懒,什么都没留下…
展开
-
数据挖掘与机器学习——关联规则与协同过滤
相邻矩阵(了解就行,不用太关注)两者区别——基于用户与基于物品。协同过滤(基于用户)协同过滤(基于物品)原创 2024-05-30 11:23:26 · 668 阅读 · 0 评论 -
数据挖掘与机器学习——聚类算法
无监督学习无监督学习聚类算法概念:功能:应用场景:评判标准:划分聚类:K-means聚类逻辑实现:聚类方式问题:解决:可能存在的问题:1.初始值对K-means聚类的影响2.K值对K-means聚类的影响python实现:层次聚类凝聚层次聚类分裂层次聚类层次聚类运行过程层次聚类的问题解决办法MIN单连接全连接组平均质心距离层次聚类特点python实现密度聚类相关概念。原创 2024-05-30 09:45:35 · 703 阅读 · 1 评论 -
数据挖掘与机器学习——回归分析
回归分析定义:案例:线性回归预备知识:定义:一元线性回归:如何找出最佳的一元线性回归模型:案例:python实现:多元线性回归案例:线性回归的优缺点:逻辑回归(解决分类问题)案例:定义:python实现:案例:逻辑回归优点:逻辑回归缺点:(解决分类问题)原创 2024-05-28 12:34:44 · 740 阅读 · 0 评论 -
数据挖掘与机器学习——分类算法
1.回归 2.分类。机器学习算法最普通分类:分类算法的定义:分类算法的应用:分类器实现分类:分类器的构建标准:概率模型:贝叶斯公式:朴素贝叶斯算法(朴素贝叶斯分类器):案例:注意:python实现:KNN算法空间向量模型:KNN的定义:案例:原创 2024-05-28 11:24:27 · 430 阅读 · 0 评论 -
数据挖掘与机器学习——常用的python操作
counter = 100 # 整型变量miles = 1000.0 # 浮点型变量name = "John" # 字符串变量ndarray: 多维数组对象,用于存储单一数据类型的数组。ufunc: 用于对数组进行元素级运算的函数。Series: 一维数组型对象,适用于标签化的数据。DataFrame: 二维表格型数据结构,有行索引和列索引。原创 2024-05-16 09:34:21 · 998 阅读 · 0 评论 -
数据挖掘与机器学习——机器学习概述
机器学习的英文名称叫Machine Learning,简称ML,该领域主要研究的是如何使计算机能够模拟人类的学习行为从而获得新的知识。机器学习与数据挖掘的联系:简单来说,机器学习就是让计算机从大量的数据中学习到相关的规律和逻辑,然后利用学习来的规律来预测以后的未知事物。机器学习中非常重要的概念:训练,预测,模型二、机器学习的分类按任务类型进行分类按监督模式进行分类最新方向:增强学习和深度学习。原创 2024-05-16 09:14:26 · 1055 阅读 · 0 评论 -
数据挖掘与机器学习——概念篇
数据挖掘是从数据中,发现其有用的信息,从而帮助我们做出决策(广义角度)。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识,寻找其规律的技术,结合统计学、机器学习和人工智能技术的综合的过程(技术角度)原创 2024-05-15 09:24:11 · 1238 阅读 · 0 评论