- 博客(14)
- 收藏
- 关注

原创 CONDA:用于协同显著目标检测的压缩深度关联学习方法
协同显著性检测(CoSOD)旨在从一组相关图像中找出共有的显著目标,是一个比普通显著性检测(SOD)更具挑战性的任务。与传统的显著对象检测(SOD)相比,CoSOD 需要充分间的关联性。CONDA 是一种的新框架。
2025-04-25 09:29:42
641

原创 共显著性目标检测数据集
F-measure是PR曲线的一个数值化版本,它综合了精确率(Precision)和召回率(Recall)来评估模型的整体性能。目标区域为白色(255),背景区域为黑色(0)。目标区域为白色(255),背景区域为黑色(0)。目标区域为白色(255),背景区域为黑色(0)。So是基于对象(Object-aware)的相似性度量,用于衡量显著目标的完整性。Sr是基于区域(Region-aware)的相似性度量,用于衡量全局显著性的分布。G(i,j)为真实显著图的像素值(Ground Truth)。
2025-03-23 16:01:48
751

原创 (DMT)用于共显著目标检测的判别性共显著性与背景挖掘 Transformer
问题1:与以往挖掘共显著线索,有什么不同。该方法显式地建模背景信息,以增强共显著性目标的判别能力。问题2:多粒度关联模块有那些作用。在保证计算效率的前提下,将图像间关系引入逐像素分割特征中。利用预定义令牌,增强共显著目标与背景的对比度。建模共显著目标间的高阶关联,提高特征表达能力。问题3:所解决的问题是什么共显著性目标检测(Co-SOD)中对背景区域的显式探索不足的问题。以往的共显著性检测方法主要通过挖掘图像间的一致性关系来提取共显著线索,但忽略了对背景信息的建模和利用。模块部分。
2025-03-18 14:53:45
825
原创 CoGSEM:面向开放世界的协同显著目标检测:生成式不确定性感知的组选择交换掩码方法
以往的 CoSOD 方法通常基于群体一致性假设,认为所有图像都包含共同的显著目标。在开放世界场景中,这一假设并不总是合理。当输入图像组中存在与主题不相关的图像时,基于该假设的模型往往会对其产生误报,导致模型在开放世界场景中的鲁棒性不足,限制了其实际应用。模型在实际应用中可能遇到的一种不受控环境,包含多样、复杂、不确定且动态变化的数据输入。
2025-04-25 10:04:41
584
原创 COSALPURE:从图像组中学习概念以实现鲁棒的共显著性检测翻译
除了 DiffPure [22] 之外,我们提出从图像组中学习共显著目标的概念,并利用该概念引导净化过程。具体来说,给定包含 M 张退化图像和 N − M 张干净图像的图像组 I′ = {I ′ j}M j=1 ∪ {Ik}N−M k=1,我们首先通过最近开发的文本反演方法从 I′ 中学习概念。所学的概念是一个标记,并且位于文本的潜在空间中。我们将其命名为“概念”,因为我们可以利用它来生成包含该“概念”的新图像。需要注意的是,在应用过程中,退化图像的数量(即 M)是未知的。
2025-04-23 20:47:22
570
原创 协同显著物体检测论文分类
7.Towards Open-World Co-Salient Object Detection with Generative Uncertainty-aware Group Selective Exchange-Masking-2023(有代码)3.Can You Spot the Chameleon?概念引导的扩散净化(Concept-Guided Diffusion Purification)解决如何利用学习到的概念来净化图像中的对抗性扰动的问题,确保净化后的图像能够准确反映共显著目标的语义信息。
2025-04-10 09:04:30
873
原创 用于共显著目标检测的判别性共显著性与背景挖掘 Transformer 翻译
图1展示了我们提出的用于同时检测共显著目标和背景区域的MaskFormer风格框架。它由两个子路径组成,即像素级分割特征生成和检测令牌构建。我们在第一个子路径中使用R2R来增强分割特征的图像间一致性。在第二个子路径中,设计了CtP2T和CoT2T来有效构建共显著性和背景令牌,捕捉二元检测模式。最后,我们提出了TGFR来利用检测令牌作为引导来细化分割特征。为了便于理解,我们首先简要描述用于同时在CoSOD中检测共显著性和背景的原始MaskFormer风格框架。
2025-04-09 15:57:26
946
原创 GCoNet
1.输入图像与编码器:两个输入图像组(“吉他”和“小提琴”)分别通过各自的编码器,生成对应的特征图和。2.特征图(Feature map):编码器输出的特征图和具有相同的尺寸 N×C×H×W。3.组共识模块(ACM):ACM 模块接收特征图和,并生成一个组共识特征图,用于增强不同图像组之间的特征一致性。ACM 模块的输出通过红色虚线箭头反馈到和,表示这些信息仅在训练过程中使用。4.全局注意力模块(GAM):每个特征图和 通过各自的 GAM 模块,生成注意力图和。
2025-03-28 09:43:36
805
原创 GNoNet+论文翻译
我们所提出的GCoNet+的基本框架是以我们的GCoNet为基础的,GCoNet是最新且最先进的方法之一。与现有的CoSOD模型不同,GCoNet+以双胞胎网络的形式,利用不同组之间的内部和外部关系。GCoNet+的流程图如图3所示。首先,我们的模型同时将两组原始图像G1和G2作为输入。通过连接的图像组,我们的编码器提取特征图F,然后将其送入辅助分类模块(ACM)进行分类,并送入我们的组协作模块(GCoM)进行进一步处理。在GCoM中,F根据类别分为两部分,即∈。
2025-03-28 09:22:23
940
原创 DCFM-CVPR2022
在图像组中,通过计算每张图像的显著性响应图,然后将这些响应图进行融合,生成一个能够代表共显著特征的原型。,在特征提取后,通过重新计算注意力权重,对共显著区域的特征进行增强。具体来说,可以使用注意力机制对特征图进行加权,使得共显著区域的特征权重增加,而非显著区域的特征权重减少。,在图像组中,将具有相似特征的图像对作为正样本,将特征差异较大的图像对作为负样本。通过对比学习,模型能够学习到更鲁棒的共显著特征表示,同时抑制背景噪声的干扰。):输入特征图,表示从之前的网络层提取的融合特征。,然后用于后续处理。
2025-03-27 20:35:38
1014
原创 民主至关重要:共显著目标检测的全面特征挖掘全文翻译
CoSOD 数据集包含带有标签的图像组。每组表示为,其中,Xn 是输入图像,Yn 是相应标签,N 是组 G 中图像的总数,且所有图像都包含相关对象。推理期间标签不可用。我们的目标是设计一种模型,通过彻底探索共享属性来挖掘全面的共同显著特征,并通过自对比学习抑制背景噪声,而无需使用分类信息或额外的 SOD 数据集。我们方法的框架和学习过程如图 2 所示。我们的网络包含五个主要模块,包括特征提取器、民主原型生成模块(DPG)、自对比学习模块(SCL)、民主特征增强模块(DFE)和解码器。
2025-03-18 21:10:53
857
原创 GCoNet
目标:给定一组包含某一类共同显著对象的N张相关图片 {I1,I2,…,IN}{I1,I2,…,IN},GCoNet 旨在同时检测这些图片中的共显著对象,并输出显著性地图。编码器网络2. 群体亲和力模块 (GAM)GAM:通过全局亲和力计算和注意力机制,捕获组内共显著对象的共性,生成注意力共识。GCM:通过组间协作学习,增强不同群体之间的判别表征,提高模型的鲁棒性。整体流程:GAM 和 GCM 协同工作,最终生成高质量的共显著性地图。3.4 辅助分类模块(ACM)
2025-02-18 15:47:43
606
原创 基于协同表达纯化的协同显著性物体检测
纯净协同表示搜索(PCS):负责估计包含较少无关信息的协同表示,并定位协同显著性物体。循环代理纯化(RPP):利用预测结果进一步纯化协同表示。这两个过程共同作用,逐步消除背景和外来前景噪声的干扰,从而提升协同显著性检测的性能。
2025-02-17 21:17:39
557
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人