中国1986-2023年30米分辨率年最大NDVI数据集(含条带修复)
本数据集包含1986年至2023年间中国(东经112.749955°至113.225114°,北纬28.022906°至28.337638°)地区的年最大归一化植被指数(NDVI)值,体现了38年间该地区植被动态的年际变化。数据源自LANDSAT系列遥感卫星,通过Google Earth Engine云计算平台进行处理(包括去云、云影去除、以及条带错位的修复)获得。
本数据集以30米的空间分辨率捕捉植被的生长状态,为从长时间尺度观测植被变化提供了宝贵的数据资源。
关键词 NDVI, LANDSAT系列,中国, 条带修复,30米 数据采集和处理 数据集整合了LANDSAT系列多型号卫星(如LANDSAT 5 TM, LANDSAT 7 ETM+, LANDSAT 8 OLI/TIRS,LANDSAT9等)的表面反射率产品。采用先进算法对原始遥感影像进行云屏蔽、条带错位修复,并基于已处理影像生成年最大NDVI。
(1)云和阴影遮挡修正 应用去云算法cloudMaskL7,通过分析影像的质量评估带来除去影响植被指数计算的云和阴影,提升数据的质量与应用价值。其主要代码:
(2)SLC条带修复 特别对于LANDSAT 7 ETM+在2011-2013年的SLC-off期间受损数据,开发了GapFill条带修复算法,通过周边像素值预测缺失信息,确保NDVI时序的完整性。
主要是通过一个核函数进行设定,然后按照邻近像素进行聚类分析,最后按照线性函数的斜率和截距进行进行条带的插值即可填充。具体的修复原理如下:
1. 首先,使用适当的算法来确定缺失的数据,例如插值算法或回归分析。
2. 然后,使用较高分辨率的传感器图像,例如MODIS的数据,来填充缺失的数据。可以使用像素匹配技术来匹配Landsat 7和MODIS数据之间的相似像素。
3. 接下来,通过对不同波段的颜色进行校正,将填充的数据与原始的Landsat 7数据进行融合。此时,需要对填充的数据进行调整,使其与原始数据的亮度和色调匹配。
4. 最后,对修复后的图像进行后处理,例如去除椒盐噪声或进行图像平滑操作,以获得更好的视觉效果。
通过使用较高分辨率的传感器数据来填充缺失的数据,可以恢复Landsat 7图像的质量并减少条带状的颜色差异。
(3)NDVI计算与合成 分别对LANDSAT 5/7/8系列数据计算NDVI,最后合成各年份最大NDVI值以反映植被在每年中的最佳状态。由红波段与近红外波段的归一化比值处理获得,其中Landsat5 和Landsat 7NDVI计算利用 B4和B3波段,Landsat8 和Landsat9 NDVI计算利用 B5和B4波段。但合成算法采用的是最大NDVI方法,并进行BRDF校正。
NDVI计算公式为:
NDVI=(NIR-R)/(NIR+R)
应多位学者科研需求,现将主要修复代码分享给大家,大家可自行处理,代码如下:
// ##### 去云函数 #######//
var cloudMaskL7 = function(image) { var qa = image.select('pixel_qa');
var cloud = qa.bitwiseAnd(1 << 5) .
and(qa.bitwiseAnd(1 << 7)) .
or(qa.bitwiseAnd(1 << 3));
var mask2 = image.mask().reduce(ee.Reducer.min());
return image.updateMask(cloud.not()).updateMask(mask2); };
var l7 = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR')
.map(cloudMaskL7);
// ##### 用于云遮蔽 L7 收集的 SLC 填隙功能 #######//
var kernelSize = 25;// Tried with 5, 10, 20, 30
var kernel = ee.Kernel.square(kernelSize * 30, 'meters', false);
var GapFill = function(image) { var start = image.date().advance(-1, 'year');
var end = image.date().advance(1, 'year');
var fill = l7.filterDate(start, end).median();
var regress = fill.addBands(image);
var regress1 = regress.select(regress.bandNames().sort());
var fit = regress1.reduceNeighborhood(ee.Reducer.linearFit().forEach(image.bandNames()), kernel, null, false);
var offset = fit.select('.*_offset');
var scale = fit.select('.*_scale');
var scaled = fill.multiply(scale).add(offset);
return image.unmask(scaled, true); };
// ##### 过滤原始图像集并实施云屏蔽#######//
Map.centerObject(AOI, 11);
var visParams = {bands: ['B3', 'B2', 'B1'], min: 200, max: 3000};
var filteredColl_cloudmasked = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR') .filterBounds(AOI)
.filterDate('2012-01-01', '2012-07-31')
.map(cloudMaskL7)
print(filteredColl_cloudmasked);
数据集创新点
该数据集受Landsat影像数量影响明显,有的年份局部区域(主要是新疆、西藏)数据缺失,不同影像图幅间可能会有整体性条纹状差异。对2012和2013年LANDSAT 7 ETM+受SLC-off影响的数据进行条带修复,确保数据连续性。便于分析中国近40年的植被历史变化及趋势。数据修复效果前后对比: