数据倾斜之count(distinct)

一、简单count(distinct id)

count(distinct id)

在极大数据量的情况下

从执行计划上面来看:

只生成一个reducer任务,所有的id都聚集到同一个reducer任务进行去重然后在聚合,非常容易造成数据倾斜.

解决方案:

1、利用Hive对嵌套语句的支持,将原来一个MapReduce作业转换为两个作业,

在第一阶段选出全部的非重复id,在第二阶段对选出的非重复id进行计数。

在第一阶段可以通过增大Reduce的并发数,并发处理Map输出。

在第二阶段,对已去重的id进行计数,count(*)在Map阶段不需要输出原id,只输出一个计数结果。

这样即使第二阶段Hive强制指定一个Reduce Task,极少量的Map输出数据也不会使单一的Reduce Task造成oom。

select count(*) from (select distinct id from users)t;

2、group by

select a,count(distinct b) from t group by 

select tt.a,count(tt.b) from (select a,b from t group by a,b)tt group by tt.a

group by将数据分组到了多个reducer上进行处理

distinct:先把b列所有数据保存到内存,速度快,单b

大数据常见问题之数据倾斜全文共5页,当前为第1页。大数据常见问题之数据倾斜全文共5页,当前为第1页。大数据常见问题之数据倾斜 大数据常见问题之数据倾斜全文共5页,当前为第1页。 大数据常见问题之数据倾斜全文共5页,当前为第1页。 什么是数据倾斜 简单的讲,数据倾斜就是我们在计算数据的时候,数据的分散度不够,导致大量的数据集中到了一台或者几台机器上计算,这些数据的计算速度远远低于平均计算速度,导致整个计算过程过慢。 相信大部分做数据的童鞋们都会遇到数据倾斜数据倾斜会发生在数据开发的各个环节中,比如: 用Hive算数据的时候reduce阶段卡在99.99% 用SparkStreaming做实时算法时候,一直会有executor出现OOM的错误,但是其余的executor内存使用率却很低。 数据倾斜有一个关键因素是数据量大,可以达到千亿级。 数据倾斜长的表现 以Hadoop和Spark是最常见的两个计算平台,下面就以这两个平台说明: 1、Hadoop中的数据倾斜 Hadoop中直接贴近用户使用使用的时Mapreduce程序和Hive程序,虽说Hive最后也是用MR来执行(至少目前Hive内存计算并不普及),但是毕竟写的内容逻辑区别很大,一个是程序,一个是Sql,因此这里稍作区分。 Hadoop中的数据倾斜主要表现在ruduce阶段卡在99.99%,一直99.99%不能结束。 这里如果详细的看日志或者和监控界面的话会发现: 有一个多几个reduce卡住 各种container报错OOM 读写的数据量极大,至少远远超过其它正常的reduce 伴随着数据倾斜,会出现任务被kill等各种诡异的表现。 经验: Hive的数据倾斜,一般都发生在Sql中Group和On上,而且和数据逻辑绑定比较深。 2、Spark中的数据倾斜 大数据常见问题之数据倾斜全文共5页,当前为第2页。大数据常见问题之数据倾斜全文共5页,当前为第2页。Spark中的数据倾斜也很常见,这里包括Spark Streaming和Spark Sql,表现主要有下面几种: 大数据常见问题之数据倾斜全文共5页,当前为第2页。 大数据常见问题之数据倾斜全文共5页,当前为第2页。 Executor lost,OOM,Shuffle过程出错 Driver OOM 单个Executor执行时间特别久,整体任务卡在某个阶段不能结束 正常运行的任务突然失败 补充一下,在Spark streaming程序中,数据倾斜更容易出现,特别是在程序中包含一些类似sql的join、group这种操作的时候。 因为Spark Streaming程序在运行的时候,我们一般不会分配特别多的内存,因此一旦在这个过程中出现一些数据倾斜,就十分容易造成OOM。 数据倾斜的原理 1、数据倾斜产生的原因 我们以Spark和Hive的使用场景为例。他们在做数据运算的时候会设计到,countdistinct、group by、join等操作,这些都会触发Shuffle动作,一旦触发,所有相同key的值就会拉到一个或几个节点上,就容易发生单点问题。 2、万恶的shuffle Shuffle是一个能产生奇迹的地方,不管是在Spark还是Hadoop中,它们的作用都是至关重要的。那么在Shuffle如何产生了数据倾斜? Hadoop和Spark在Shuffle过程中产生数据倾斜的原理基本类似。如下图。 大数据常见问题之数据倾斜全文共5页,当前为第3页。大数据常见问题之数据倾斜全文共5页,当前为第3页。 大数据常见问题之数据倾斜全文共5页,当前为第3页。 大数据常见问题之数据倾斜全文共5页,当前为第3页。 大部分数据倾斜的原理就类似于下图,很明了,因为数据分布不均匀,导致大量的数据分配到了一个节点。 3、从业务计角度来理解数据倾斜 数据往往和业务是强相关的,业务的场景直接影响到了数据的分布。再举一个例子,比如就说订单场景吧,我们在某一天在北京和上海两个城市多了强力的推广,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。然后我们要统计不同城市的订单情况,这样,一做group操作,可能直接就数据倾斜了。 如何解决 数据倾斜的产生是有一些讨论的,解决它们也是有一些讨论的,本章会先给出几个解决数据倾斜的思路,然后对Hadoop和Spark分别给出一些解决数据倾斜的方案。 一、几个思路 解决数据倾斜有这几个思路: 1.业务逻辑,我们从业务逻辑的层面上来优化数据倾斜,比如上面的例子,我们单独对这两个城市来做count,最后和其它城市做整合。 大数据常见问题之数据倾斜全文共5页,当前为第4页。大数据常见问题之数据倾斜全文共5页,当前为第4页。2.程序层面,比如说在Hive中,经常遇到countdistinct)操作,这样会
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值