【数据结构】_1.复杂度

目录

1.算法效率

2.时间复杂度

3.空间复杂度


正文:

1.算法效率

一般情况下衡量一个算法的好坏是从时间和空间两个维度来衡量的。

时间复杂度主要衡量一个算法的运行快慢,空间复杂度主要衡量一个算法运行需要的额外空间。

2.时间复杂度

2.1 时间复杂度的概念

在计算机科学中算法的时间复杂度是一个函数,一个算法所花费的时间与其中语句的执行次数成比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

同时请注意,我们不能直接用运行时间来定义一个算法的时间复杂度,是因为一个算法的运行时间与硬件的配置存在联系,同样一个算法是没有办法算出准确时间的。

示例:

void Func1(int N)
 {
int count = 0;
for (int i = 0; i < N ; ++ i)
 {
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
int M = 10;
while (M--)
 {
 ++count; 
}
printf("%d\n", count);
}

在上述代码中,F(N)=N*N+2*N+10,这是准确的时间复杂度函数式,计算的结果是算法运行的准确次数,然而意义并不大,我们在及计算时间复杂度时,并不一定要计算出准确的执行次数,只需要大概执行次数,故而引进大O的渐进表示法。

2.2 大O的渐进表示法

当不方便在算法之间比较准确时间复杂度函数式时,使用大O的渐进表示法。

简单而言,大O渐进表示法是估算一个算法的数量级而非准确数值。

具体而言,推导大0阶方法:

(1)用常数1取代运行时间中的所有加法常数;

(2)在修改后的运行次数函数中,只保留最高阶项;

(3)如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

示例1:

void Func2(int N)
 {
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

该算法的时间复杂度的准确函数式为F(N)=2*N+10,O(N)=N;

示例2:

void Func3(int N, int M) 
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

当N、M大小未知时,时间复杂度表示为O(N+M);

当N远大于M时,时间复杂度表示为O(N);

当M远大于N时,时间复杂度表示为O(M);

当N、M属于一个量级时,时间复杂度表示为O(M)或O(N)均可;

示例3:

void Func4(int N)
 {
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

时间复杂度表示为O(1);

示例4:

const char * strchr ( const char * str, int character );
该算法的时间复杂度最好1次,最坏N次,时间复杂度一般看最坏,是O(N);

PS:strchr的功能是在字符串中查找一个字符,如下:

while(*str)
{
if(*str==character)
return str;
else
++str;
}
return NULL;

示例4小结:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N);
示例5:
void BubbleSort(int* a, int n)
 {
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

冒泡排序的时间复杂度准确函数式式F(N)=N-1+N-2+...+2+1=((N-1+1)*(N-1))/2=(N*(N-1))/2;

故而时间复杂度是O(N^2);

注意计算时间复杂度不能数循环,一定要看算法思想。

示例6:

int BinarySearch(int* a, int n, int x)
 {
 assert(a);
 int begin = 0;
 int end = n-1;
 while (begin < end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid;
 else
 return mid;
 }
 return -1; 
}

二分查找的时间复杂度最好O(1),最坏O(log N)   

注:在文本中写对数不方便,在时间复杂度中log N经常出现,故而简写为log N,然而在部分博客与教材中会简写为lg N,这其实并不准确,但一般情况下,都会将其默认为log N,底数为2。

(查找了多少次就除了多少次2,假设找了x次,2^x=N)

示例7:

long long Fac(size_t N)
 {
 if(0 == N)
 return 1;
 return Fac(N-1)*N;
 }

可以观察到该函数的功能是求阶乘。时间复杂度为O(N);

示例8:

long long Fib(size_t N) 
{
 if(N < 3)
 return 1;
 return Fib(N-1) + Fib(N-2);
}

复杂度具体函数可以近似为F(N)=2^0+2^1+2^2+......+2^(N-2)=2^(N-1)-1,时间复杂度为O(2^N);

总结:按数量级递增排列,常见的时间复杂度有:O(1)<=O(log N)<=O(N)<=O(Nlog N)<=O(n^2)<=O(n^3)<=...<=n^k<=O(2^n)

随着问题规模N的不断增大,上述时间复杂度不断增大,算法的执行效率越低,若复杂度超过O(2^n),此算法效率已经非常低,没有运行的必要。

例题1:数组nums包含从0到n的所有整数,但其中缺了一个,请编写代码找出那个缺失的整数,有办法在O(N)时间内完成吗

思路一:一一对应:

step1:开辟一个额外的n+1个数字的数组,并将数组的每一个元素赋值为-1;

step2:遍历所有数字,这个数字是多少,就放置在对影数组下标的位置;

step3:遍历一遍数组,哪个位置是-1则这个位置所对应的数组元素下标就是缺失的数字;

思路二:异或(相同为0 相异为1):

step1:用x=0与数组中所有的数据都异或一遍;

step2:所得结果再与0——N之间的数字异或一遍;

因为异或与顺序无关,存在的数字都异或了两次,最终结果都是1,只有那个0——N之间存在然而数组中不存在的数字经过两次异或后结果为0,这个数就是缺失的数字。

思路三:排序+二分查找:

冒泡排序O(N)+二分查找log N和快排O(N)+二分查找log N二者均不满足复杂度要求,故不做详细解释。

思路四:公式计算:

0——N利用求和公式计算总和,再减去数组中的所有元素的值,得到的差值就是缺失的元素。

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。同时间复杂度一样,具体占用了多少bytes的空间大小没有意义,也使用大O渐进表示法。

注意函数运行时所需要的栈空间(存储参数、局部变量以及一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显示申请的额外空间来确定。

示例一:

void BubbleSort(int* a, int n)
 {
 assert(a);
 for (size_t end = n; end > 0; --end) 
{
 int exchange = 0;                          
 for (size_t i = 1; i < end; ++i)          
 {   
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

开辟了常数个额外空间,故而空间复杂度是O(1);

示例二:

long long* Fibonacci(size_t n) 
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

空间复杂度是O(N);

示例三:

long long Fac(size_t N) 
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
 }

空间复杂度是O(N);

示例四:

long long Fib(size_t N) 
{
 if(N < 3)
 return 1;
 return Fib(N-1) + Fib(N-2);
}

(时间是累积的;空间不累积,可以重复利用)空间复杂度是O(N);

注:对空间可以重复利用的理解:

 两个函数地址相同,说明调用的是同一个区域,即空间重复利用。

 ||终

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值