题意:
题意是给你一个01矩阵,如果ch[i][j]是‘1’,那么i就是j的一个真子集。让你构造出这么一个n个集合,构造出的集合之间的关系符合01矩阵
分析:
输入的是01矩阵。每次的‘1’,是i是j的一个真子集,类似于在ij之间连一条有向边。然后把所有的i集合的元素都加入到j集合里面,以此类推。每个集合的初始元素都是i,满足了01矩阵对角线上都是0的情况,下面就按照上面这样去构造
实现:
这样构造就类似于一个拓扑序,但并不是真正的拓扑序。因为拓扑序是只能由前面指向后面,前面的顺序并不固定,一个链状的结构。而对于此题来说,是一个包含的关系,可能有几条不同的链组成,也可能并不相交。所以依然用类似拓扑序的方法去从前开始向后枚举,但是在枚举的过程中就直接的把当前的点指向后面的点,也就是把i集合的点全部放入j集合。因为每两个点之间的关系都是明确的,只要有指向,那就有包含关系。就不需要再考虑整体的每个点之间的关系了。
注意点:
这个是集合,没有重复元素,最好使用set,不要用vector
代码:
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#define