目录
二叉搜索树:
一,什么是二叉搜索树?
二叉搜索树(BST, Binary Search Tree),也称二叉排序树或二叉查找树
二叉搜索树: 一棵二叉树,可以为空;如果不为空,满足以下性质:
1.非空左子树的所有键值小于其根结点的键值。
2.非空右子树的所有键值大于其根结点的键值。
3.左、右子树都是二叉搜索树。
二,操作函数
Position Find( ElementType X, BinTree BST):从二叉搜索树BST中查找元素X,返回其所在结点的地址;
Position FindMin( BinTree BST ):从二叉搜索树BST中查找并返回最小元素所在结点的地址;
Position FindMax( BinTree BST):从二叉搜索树BST中查找并返回最大元素所在结点的地址。
P BinTree Insert( ElementType X, BinTree BST )
P BinTree Delete( ElementType X, BinTree BST )
1,Find(查找)
查找从根结点开始,如果树为空,返回NULL
若搜索树非空,则根结点关键字和X进行比较,并进行不同处理:
①若X小于根结点键值,只需在左子树中继续搜索;
②如果X大于根结点的键值,在右子树中进行继续搜索;
③若两者比较结果是相等,搜索完成,返回指向此结点的指针。.
代码实现:
尾递归:
Posi tion Find( ElementType X,BinTree BST )
{
if.(!BST)returnNULL;/*如果为空,返回NULL*/
if.(X.>BST->Data)
return FindT X, BST->Right ) ; /*在右子树中继续查找*,
else if( X< BST->Data )
return Find( x, BST->left ) ; /*在左子树中继续查找*/
else /* X == BST->Data */
return BST; /*查找成功,返回结点的找到结点的地址*/
}
迭代函数:由于非递归函数的执行效率高,可将“尾递归” 函数改为迭代函数
Position IterFind( E1ementType X, BinTree BST )
{
while( BST ) {
if( X > BST->Data )
BST = BST->Right; /*向右子树中移动,继续查找*/
else if( X < BST->Data )
BST = BST->Ieft; /*向左子树中移动,继续查找*/
else /* X == BST->Data */
return BST; /*查找成功,返回结点的找到结点的地址*/
}
return NULL; /*查找失败*/
}
查找最大和最小元素
1)最大元素一定是在树的最右分枝的端结点上
2)最小元素一定是在树的最左分枝的端结点上
找最小元素:
Position FindMin( BinTree BST )
{
if( !BST ) return NULL; /*空的二叉搜索树,返回NULL*/
else if( !BST-> Left )
return BST; / *找到最左叶结点并返回*/
else
return FindMin( BST->Left ) ; /*沿左分支继续查找*/
}
找最大元素:
Position FindMax( BinTree BST )
{
if (BST )
while ( BST-> >Right )
BST = BST->Right ;
/*沿右分支继续查找, 直到最右叶结点*/
return BST ;
}
2,Insert(插入)
BinTree Insert( E1ementType X,BinTree BST )
{
if( !BST ) {
/*若原树为空, 生成并返回一个结点的二叉搜索树*/
BST = malloc(sizeof (struct TreeNode) ) ;
BST->Data = X;
BST->Left = BST->Right = NULL;
}else / *开始找要插入元素的位置*/
if( X < BST->Data )
BST->Left = Insert( X,BST-> Left) ;
/*递归插入左子树*/
else if( X > BST->Data )
BST->Right = Insert( X, BST->Right) ;
/*递归插入右子树*/ .
/* else x已经存在,什么都不做*/
return BST ;
}
3,delete(删除)
1)删叶结点:
要删除的是叶结点:直接删除,并再修改其父结点指针--置为NULL
2)要删除的结点只有一个孩子结点:将其父结点的指针指向要删除结点的孩子结点
3)要删除的结点有左、右两棵子树:
用另一结点替代被删除结点:右子树的最小元素或者左子树的最大元素
代码实现:
BinTree Delete ( E1ementType X,BinTree BST )
{
Position Tmp;
if( !BST ) printf ("要删除的元素未找到") ;
else if ( X < BST->Data )
BST->Left = Delete( x,BST->Ieft) ; /*左子树递归删除*/
else if( X > BST->Data )
BST->Right = Delete( X,BST->Right) ; /*右子树递归删除*/
else / *找到要删除的结点*/
if( BST->Left && BST->Right ) { /*被删除结点有左右两个子结点*/
Tmp = FindMin( BST->Right ) ;
/*在右子树中找最小的元素填充删除结点*/
BST->Data = Tmp->Data;
BST->Right = Delete( BST->Data, BST->Right) ;
/*在删除结点的右子树中删除最小元素*/
} else { /*被删除结点有一个或无子结点*/
Tmp=BST;
if( !BST->Ieft ) /* 有右孩子或无子结点*/
BST = BST- >Right;
else if( !BST->Right ) /*有左孩子或无子结点*/
BST = BST->Left;
free( Tmp ) ;
return BST ;
}
平衡二叉树:
一,什么是平衡二叉树?
平衡因子( Balance Factor,简称BF) : BF(T)= hL-hR,其中hL和hR分别为T的左、右子树的高度。
平衡二叉树( Balanced Binary Tree) ( AVL树)
空树,或者
任一结点左、右子树高度差的绝对值不超过1,即|BF(T)|S 1
平衡二叉树的高度能达到log2n吗?
设nh高度为h的平衡二叉树的最少结点数。结点数最少时:
二,平衡二叉树的调整
对二叉树的一些操作会导致其平衡失调,所以我们要对其做出调整。
1,右单旋
2,左单旋
3,左右单旋
4,右左单旋
堆(heap):
优先队列(Priority Queue) :特殊的“队列”,取出元素的顺序是依照元素的优先权(关键字)大小,而不是元素进入队列的先后顺序。
1,问题:如何组织优先队列?
一般的数组、链表?
有序的数组或者链表?
二叉搜索树? AVL树?
2,是否可以采用二叉树存储结构?
二叉搜索树?
如果采用二叉树结构,应更关注插入还是删除?
➢树结点顺序怎么安排?
➢树结构怎样?
➢堆的两个特性
结构性:用数组表示的完全二叉树;
有序性:任一结点的关键字是其子树所有结点的最大值(或最小值)
最大堆(MaxHeap)”,也称“大顶堆”:最大值
最小堆(MinHeap)” ,也称“小顶堆”:最小值
一,堆的抽象数据类型描述
类型名称:最大堆(MaxHeap)
数据对象集:完全二叉树,每个结点的元素值不小于其子结点的元素值
操作集:最大堆H∈MaxHeap,元素item∈ElementType,主要操作有:
●MaxHeap Create( int MaxSize ):创建一 - 个空的最大堆。
●Boolean IsFull( MaxHeap H):判断最大堆H是否已满。
●Insert( MaxHeap H, ElementType item):将元素item插入最大堆H。
●Boolean IsEmpty( MaxHeap H );判断最大堆H是否为空。
●ElementType DeleteMax( MaxHeap H):返回H中最大元素(高优先级)。
1,最大堆的创建:
typedef struct HeapStruct *MaxHeap;
struct HeapStruct {
ElementType *Elements; /* 存储堆元素首地址*/
int Size;/*堆的当前元素个数*/
int Capacity;/*堆的最大容量/
};
MaxHeap Create ( int MaxSize )
{
/*创建容量为MaxSize的空的最大堆*/
MaxHeap H = malloc( sizeof( struct HeapStruct ) ) ;
H->Elements = mal1oc( (MaxSize+1) * sizeof (ElementType) ) ;
H->Size = 0 ;
H- >Capacity = MaxSize;
H->Elements[0] = MaxData ;
/*定义“哨兵”为大于堆中所有可能元素的值,便于以后更快操作*/
return H ;
}
2,最大堆的插入:
将新增结点插入到从其父结点到根结点的有序序列中
void Insert( MaxHeap H,ElementType item )
{ /*将元素item插入最大堆H,其中H->Elements[0]已经定义为哨兵*/
int i;
if ( IsFu11(H) ) {
printf ("最大堆已满") ;
return;
}
i = ++H->Size; /* i指向插入后堆中的最后一个元素的位置*/
for ( ; H->E1ements[i/2] < item ; i/=2 )
H->E1ements[i] = H->Elements[i/2]; /*向下过滤结点*/
H->E1ements[i] = item; /*将item插入*/
}
哨兵的作用:i>1
T(N)=O(logN)
3,最大堆的删除:
取出根结点(最大值)元素,同时删除堆的一个结点。
ElementType DeleteMax( MaxHeap H )
{ /*从最大堆8中取出键值为最大的元素,并删除-一个结点*/
int Parent, Child;
E1ementType MaxItem,temp ;
if ( IsEmpty (H) ) {
printf ("最大堆已为空") ;
return ;
}
MaxItem = H->E1ements[1]; /*取出根结点最大值*/
/*用最大堆中最后一个元素从根结点开始向上过滤下层结点*/
temp = H- > Elements[H->Size--] ;
for( Parent=1; Parent*2<=H->Size; Parent=Child ) {
Child = Parent ★2 ;
if( (Child!= H->Size)&&(H->Elements [Chi1d] < H->Elements [Chi1d+1]) )
Child++; /* Child指向左右子结点的较大者*/
if( temp >= H-> Elements [Chi1d] ) break ;
else /*移动temp元素到下一层*/
H->Elements [Parent] = H->Elements [Child] ;
}
H->Elements [Parent] = temp ;
return MaxItem :
}
4,最大堆的建立:
建立最大堆:将已经存在的N个元素按最大堆的要求存放在一个一维数组中
方法1: 通过插入操作,将N个元素一个个相继插入到一个初始为空的堆中去,其时间代价最大为O(N logN)。
方法2:在线性时间复杂度下建立最大堆。
(1)将N个元素按输入顺序存入,先满足完全二叉树的结构特性
(2)调整各结点位置,以满足最大堆的有序特性。
哈夫曼树与哈夫曼编码
一,哈夫曼树的定义
带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值Wk;从根结点到每个叶子结点的长度为Ik,则每个叶子结点的带权路径长度之和就是:
最优二叉树或哈夫曼树: WPL最小的二叉树
二,哈夫曼树的构造
每次把权值最小的两棵子树合并
typedef struct TreeNode * Huf fmanTree ;
struct TreeNode {
int Weight;
HuffmanTree Left, Right;
}
Huf fmanTree Huffman( MinHeap H )
{ /*假设H->Size个权值已经存在H->Elements []->Weight里*/
inti;
Huf fmanTree T ;
BuildMinHeap(H) ; /*将H->Elements []按权值调整为最小堆*/
for(i = 1; i < H->Size; i++) { /*做H->Size-1次合并*/
T = malloc( sizeof( struct TreeNode) ) ; /*建立新结点*/
T->Left = DeleteMin(H) ;
/*从最小堆中删除-一个结点, 作为新T的左子结点*/
T->Right = DeleteMin(H) ;
/*从最小堆中删除-一个结点,作为新T的右子结点*/
T->Weight = T->Left->Weight+T->Right->Weight ;
/*计算新权值*/
Insert( H,T ) ; /*将新T插入最小堆*/
}
T =DeleteMin(H) ;
//整体复杂度为O(N logN)
returnT;
}
三,哈夫曼树的特点
没有度为1的结点;
n个叶子结点的哈夫曼树共有2n-1个结点;
哈夫曼树的任意非叶节点的左右子树交换后仍是哈夫曼树;
对同一 组权值{w1 ,W2, .... wn},是否存在不同构的两
棵哈夫曼树呢?
对一组权值{1,2,3,3},不同构的两棵哈夫曼树:
四,哈夫曼编码
给定一段字符串,如何对字符进行编码,可以使得该字符串的编码存储空间最少?
[例]假设有一段文本,包含58个字符,并由以下7个字符构: a, e, i,s, t,空格(sp),换行(nl) ;这7个字符出现的次数不同。如何对这7个字符进行编码,使得总编码空间最少?
[分析]
(1)用等长ASCII编码: 58 X8 = 464位;
(2)用等长3位编码: 58 X3= 174位;
(3)不等长编码:出现频率高的字符用的编码短些,出现频率低的字符则可以编码长些?
怎么进行不等长编码?
如何避免二义性?
⑨前缀码prefix code:任何字符的编码都不是另一字符编码的前缀
◆可以无二义地解码
二叉树用于编码
用二叉树进行编码:
(1)左右分支: 0、1
(2)字符只在叶结点上