Agent AI智能体的崛起和未来社会角色 Agent AI智能体是一种拥有高度智能和自主性的人工智能系统。与传统的AI系统相比,Agent AI更加复杂和全面,能够通过感知、学习和决策来执行任务和处理复杂问题,减少对人类指导的需求。这种智能体通常拥有自我学习和自我优化的能力,能够在不断变化的环境中自适应和演化。
一条SQL语句执行的过程 出现的问题:全部使用长连接,有些时候MySQL占用内存涨得特别快,在执行过程中临时使用的内存是管理在连接对象里面的,这些资源会在连接断开的时候才释放。如果一个用户已经建立了连接,即使管理员中途修改了该用户的权限,也不会影响已经存在连接的权限。执行方法的逻辑结果是一样的,但是执行的效率会有不同,而优化器的作用就是决定选择使用哪一个方案。在完成经典的TCP握手后,连接器就要开始认证你的身份,这个时候用的就是你输入的用户名和密码。打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。
在4GB物理内存上,申请8G内存会怎么样 你的主机的「物理内存」够不够大了,即使 malloc 申请的是虚拟内存,只要不去访问就不会映射到物理内存,但是申请虚拟内存的过程中,还是使用到了物理内存(比如内核保存虚拟内存的数据结构,也是占用物理内存的),如果你的主机是只有 2GB 的物理内存的话,大概率会触发 OOM。,我把上面的代码改成了申请 64GB 内存后,当进程申请完 64GB 虚拟内存后,使用到 56 GB (这个不要理解为占用的物理内存,理解为已被访问的虚拟内存大小,也就是在物理内存呆过的内存大小)的时候,进程就被系统 kill 掉了。
MySql中char和varchar的区别 上看,varchar是变长的(Variable-length),char是定长的(Fixed-length)因为存储时,char会用空格填充至指定长度,所以取出时需要去除空格。如果char字段有唯一索引,如果最大长度超过255,就需要2字节,否则1字节。,则插入记录后就分配了100个字节,后续修改不会造成页分裂、页空隙等问题,而。:char是255,varchar是65535,单位是字符(而不是字节)。例子:某个字段的最大长度是100字节,但是会频繁修改。:char会将尾随空格去掉,而varchar不会。
AIGC技术:发展现状与未来趋势 近年来,人工智能生成内容(AIGC)技术迅速发展,成为人工智能领域的一个热门话题。AIGC技术在多个领域取得了显著的进展,包括文本生成、图像生成、音频和视频生成等。这些技术的应用范围广泛,从媒体和娱乐,到教育、医疗和商业领域。本文将探讨AIGC技术的发展现状和未来趋势。
count(*)和count(1)哪个性能更好 InnoDB 循环遍历聚簇索引(主键索引),将读取到的记录返回给 server 层,但是不会读取记录中的任何字段的值,因为 count 函数的参数是 1,不是字段,所以不需要读取记录中的字段值。如果表里只有主键索引,没有二级索引时,那么,InnoDB 循环遍历聚簇索引,将读取到的记录返回给 server 层,然后读取记录中的 id 值,就会 id 值判断是否为 NULL,如果不为 NULL,就将 count 变量加 1。该函数作用是统计符合查询条件的记录中,函数指定的参数不为 NULL 的记录有多少个。
深入浅出索引知识 过程:非主键索引先在在对应的索引树上搜索到自己的值,这个值存放的是主键值,然后根据这个主键值到主键的索引树上搜索到指定的记录。例子:如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这样的索引就满足覆盖要查询的字段,这样就提高了效率。非主键索引的叶子节点内容是主键的值。如果删除,新建主键索引,会同时去修改普通索引对应的主键索引,性能消耗比较大。表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。如果数据页满了,就还要进行新的数据页的申请,将多的数据移动过去,称为。
MySql为什么使用B+树作为索引 B+树更便于遍历:由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况。树是存储在磁盘中的,访问每个节点,都对应一次磁盘 I/O 操作,树的高度就等于每次查询数据时磁盘 IO 操作的次数,极度的影响性能。B 树则不同,B 树没有冗余节点,删除节点的时候非常复杂,比如删除根节点中的数据,可能涉及复杂的树的变形。
普通索引和唯一索引如何选择 因为merge的时候是真正进行数据更新的时刻,而change buffer的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做merge之前,change buffer记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。因为引擎是按页读写的,按条件查询的话它所在的数据页就都在内存里了,即使普通索引还有其他的操作,但是我们计算平均性能差异时,仍可以认为这个操作成本对于现在的CPU来说可以忽略不计。对于唯一索引来说,找到3和5之间的位置,判断到没有冲突,插入这个值,语句执行结束;
undo log、redo log、binlog有什么用? 但是这样做的风险是,主机掉电的时候会丢数据。:把 XID 写入到 binlog,然后将 binlog 持久化到磁盘(sync_binlog = 1 的作用),接着调用引擎的提交事务接口,将 redo log 状态设置为 commit,此时该状态并不需要持久化到磁盘,只需要 write 到文件系统的 page cache 中就够了,因为只要 binlog 写磁盘成功,就算 redo log 的状态还是 prepare 也没有关系,一样会被认为事务已经执行成功;
程序员副业探索:个人价值的最大化与创业梦想的探索 作为程序员,通过副业探索,不仅可以实现个人价值的最大化,增加收入,还可以探索创业梦想。然而,副业选择与挑战需要谨慎对待,合理规划与持续学习是取得成功的关键。希望本文能够为程序员副业探索提供一些参考与启示,让他们在职业生涯中取得更大的成就与满足感。
CPU执行过程 内核中,priority 的范围是 0~139,值越低,优先级越高,其中前面的 0~99 范围是提供给实时任务使用的,而 nice 值是映射到 100~139,这个范围是提供给普通任务用的,因此 nice 值调整的是普通任务的优先级。这个算法的理念是想让分配给每个任务的 CPU 时间是一样,于是它为每个任务安排一个虚拟运行时间 vruntime,如果一个任务在运行,其运行的越久,该任务的 vruntime 自然就会越大,而没有被运行的任务,vruntime 是不会变化的。
Avi Wigderson:理论计算科学的先驱者与图灵奖得主 Avi Wigderson 是一位在理论计算机科学领域享有盛誉的学者,他的贡献不仅在学术界广受认可,而且对于计算机科学和数学领域的发展具有深远的影响。首先,随机性在算法设计中起着至关重要的作用。他的工作为随机化算法的发展提供了重要的理论基础,为解决各种计算问题提供了新的思路和方法。Avi Wigderson 的研究对于理解和构造高质量的伪随机数生成器提供了深入的洞察,为密码学的发展和应用提供了重要的支持。他的成就激励着更多的人投身于理论计算机科学的研究,为解决人类面临的复杂问题贡献自己的力量。
乐观锁和悲观锁的实现 有了 CAS,就可以实现一个乐观锁,允许多个线程同时读取(因为根本没有加锁操作),但是只有一个线程可以成功更新数据,并导致其他要更新数据的线程回滚重试。我们需要加上一个版本号(Version),在每次提交的时候将版本号+1 操作,那么下个线程去提交修改的时候,会带上版本号去判断,如果版本修改了,那么线程重试或者提示错误信息。乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去锁的开销,加大了系统的整个吞吐量。但是在效率方面,处理加锁的机制会产生额外的开销,还有增加产生死锁的机会。
如何解决mysql死锁问题 一个事务获取的间隙锁不会阻止另一个事务获取同一个间隙范围的间隙锁,共享和排他的间隙锁是没有区别的,他们相互不冲突,且功能相同,即两个事务可以同时持有包含共同间隙的间隙锁。插入意向锁与间隙锁的另一个非常重要的差别是:尽管「插入意向锁」也属于间隙锁,但两个事务却不能在同一时间内,一个拥有间隙锁,另一个拥有该间隙区间内的插入意向锁(当然,插入意向锁如果不在间隙锁区间内则是可以的)。插入意向锁与间隙锁是冲突的,所以当其它事务持有该间隙的间隙锁时,需要等待其它事务释放间隙锁之后,才能获取到插入意向锁。
mysql中有哪些锁 next-key lock 是包含间隙锁+记录锁的,如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的。当一个事务对一条记录加了 X 型记录锁后,其他事务既不可以对该记录加 S 型记录锁(S 型与 X 锁不兼容),也不可以对该记录加 X 型记录锁(X 型与 X 锁不兼容)。虽然相同范围的间隙锁是多个事务相互兼容的,但对于记录锁,我们是要考虑 X 型与 S 型关系,X 型的记录锁与 X 型的记录锁是冲突的。
事务的隔离级别 隔离性(Isolation):数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致,因为多个事务同时使用相同的数据时,不会相互干扰,每个事务都有一个完整的数据空间,对其他并发事务是隔离的。针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。
事务基础知识 失败的:当事务处在 活动的 或者 部分提交的 状态时,可能遇到了某些错误(数据库自身的错误、操作系统错误或者直接断电等)而无法继续执行,或者人为的停止当前事务的执行,我们就说该事务处在 失败的 状态。支持(NDB存储引擎不是我 们的重点),如果某个事务中包含了修改使用不支持事务的存储引擎的表,那么对该使用不支持事务的存储引擎的表所做的修改将无法进行回滚。部分提交的:当事务中的最后一个操作执行完成,但由于操作都在内存中执行,所造成的影响并没有刷新到磁盘时,我们就说该事务处在 部分提交的 状态。