C语言每日一练——第140天:抓交通肇事犯

🌟 前言

Wassup guys,我是Edison 😎

今天是C语言每日一练,第140天!

Let’s get it!

在这里插入图片描述



1. 问题描述

一辆卡车违反交通规则,撞人后逃跑。现场有三人目击该事件,但都没有记住车号,只记下车号的一些特征。
 
甲说:牌照的前两位数字是相同的;
 
乙说:牌照的后两位数字是相同的,但与前两位不同;
 
丙是数学家,他说:四位的车号刚好是一个整数的平方。
 
请根据以上线索求出车号。

2. 题目分析

按照题目的要求造出一个前两位数相同、后两位数相同且相互间又不同的 4 位整数,然后判断该整数是否是另一个整数的平方。
 
即求一个四位数 a 1 a 2 a 3 a 4 a_1a_2a_3a_4 a1a2a3a4 ,满足如下的条件:
在这里插入图片描述

3. 算法设计

该题目是数值计算问题,求解不定方程。
 
对于这种求解不定方程组的问题,一般采用穷举循环
 
首先设计双层循环穷举出所有由前两位数和后两位数组成的 4 位数车牌;
 
然后在最内层穷举出所有平方后值为 4 位数并且小于车牌号的数;
 
最后判断该数是否与车牌相等,若相等则打印车牌。

4. 流程框架

程序流程图如下所示
在这里插入图片描述
在这里插入图片描述

🍑 判断车牌 k 是否为某个整数的平方

再次利用循环来实现,循环变量 temp 求平方与车牌号 k 比较,如相等则找到车牌号。
 
优化算法,temp 的初值应该从 31 开始,因为小于30的数的平方小于 4 位数,因此该层循环为最内层循环,对每一个车牌号均做如此操作。
在这里插入图片描述

5. 代码实现

完整代码📝

int main()
{
	int i = 0;//i代表前两位车牌号数字

	int j = 0;//j代表后两位车牌号数字

	int k = 0;//k代表车牌号

	int temp = 0;

	for (i = 0; i <= 9; i++)
	{
		for (j = 0; j <= 9; j++)
		{
			//判断前两位数和后两位数字是否不同
			if (i != j)
			{
				//组成4位车牌号
				k = 1000 * i + 100 * i + 10 * j + j;

				//判断k是否是某个数的平方,若是则输出k
				for (temp = 31; temp <= 99; temp++)
				{
					if (temp * temp == k)
					{
						printf("车牌号为:%d\n", k);
					}
				}
			}
		}
	}
	return 0;
}

运行结果👇

在这里插入图片描述

6. 算法升级

针对上述程序如果已经找到相应的车牌号,请思考循环是否还需要继续呢?
 
答案是肯定的,因为算法在设计穷举循环的时候,并没有在找到车牌的时候就退出循环,而是继续穷举其他 i、j 的情况。
 
我们可以改进算法,设置一个 标识变量,该变量初值为 0,一旦找到车牌号,则改变该标识变量的值为 1,每次循环判断一下标识变量的值,如果值为 1 则退出所有循环,这样能有效地减少循环次数。

改进程序如下📝

int main()
{
	int i = 0;//i代表前两位车牌号数字

	int j = 0;//j代表后两位车牌号数字

	int k = 0;//k代表车牌号

	int temp = 0;

	int flag = 0;//标识符置为0

	for (i = 0; i <= 9; i++)
	{
		//判断标识变量
		if (flag) 
			break;

		for (j = 0; j <= 9; j++)
		{
			//判断标识变量
			if (flag)
				break;

			//判断前两位数和后两位数字是否不同
			if (i != j)
			{
				//组成4位车牌号
				k = 1000 * i + 100 * i + 10 * j + j;

				//判断k是否是某个数的平方,若是则输出k
				for (temp = 31; temp <= 99; temp++)
				{
					if (temp * temp == k)
					{
						printf("车牌号为:%d\n", k);
						flag = 1; //找到车牌后,标识变量置为1
						break; //强制退出到最内层循环
					}
				}
			}
		}
	}
	return 0;
}
评论 104
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert Edison

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值