三角函数公式(test)

三角函数是数学中一个重要的部分,它们描述了直角三角形中边和角的关系,以及单位圆上的点的坐标。以下是一些基本的三角函数公式:

## 三角函数公式 ### 定义 \[ \sin(\theta) = \frac{\text{对边}}{\text{斜边}}, \quad \cos(\theta) = \frac{\text{邻边}}{\text{斜边}}, \quad \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\text{对边}}{\text{邻边}} \] \[ \csc(\theta) = \frac{1}{\sin(\theta)}, \quad \sec(\theta) = \frac{1}{\cos(\theta)}, \quad \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{\cos(\theta)}{\sin(\theta)} \] ### 和差公式 \[ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \] \[ \cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) \] \[ \tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} \] ### 倍角公式 \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] \[ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \] \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] ### 半角公式 \[ \sin^2\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{2} \] \[ \cos^2\left(\frac{\theta}{2}\right) = \frac{1 + \cos(\theta)}{2} \] \[ \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} = \frac{1 - \cos(\theta)}{\sin(\theta)} \] ### 和差化积公式 \[ \sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) \] \[ \cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) \] ### 柯西不等式 对于任意实数序列 \(a_1, a_2, \ldots, a_n\) 和 \(b_1, b_2, \ldots, b_n\),都有: \[ (a_1^2 + a_2^2 + \cdots + a_n^2)(b_1^2 + b_2^2 + \cdots + b_n^2) \geq (a_1b_1 + a_2b_2 + \cdots + a_nb_n)^2 \] 等号成立当且仅当存在实数 \(\lambda\) 使得 \(a_i = \lambda b_i\) 对所有 \(i\) 成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值