关于齐次线性方程组以及线性无关思考

如果一个矩阵A(m*n)是线性无关的,根据线性无关的定义,n个系数K与A的n个列向量一一对应相乘要等于0的话,只有所有的系数K都为0才可以,这样我们就可以得到所有的列向量都必定不可能为0,因为如果说n个列向量中有任意一个或多个出现了为0的情况,那么对应的为0的列向量的系数就可以随便取任意数字,就不满足所有的系数都为0,也就不满足线性无关。

其次,我们知道线性无关即其齐次线性方程组只有0解,怎么推的,由线性无关定义可以知道

d3dd5f24b9ae4d1b9f90bf2ece500173.jpg

 再由齐次线性方程组式子

37c4b10853894049a9baacfc7d26786a.jpg

 两者对比,X1相当于K1,X2相当于K2以此类推,即X1到Xn都为0,即方程组只有零解

第三个,根据方程组只有0解,可知矩阵一定满秩,为什么,首先只有0解意味着X矩阵的每一个元素都有解,每一个解对应一个答案,所以必定有m个方程组,否则你不可能解出m个答案(0),也就不可能使得X矩阵都有解(0),因此矩阵化为行阶梯形最后一行一定有元素,即矩阵一定满秩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值