如果一个矩阵A(m*n)是线性无关的,根据线性无关的定义,n个系数K与A的n个列向量一一对应相乘要等于0的话,只有所有的系数K都为0才可以,这样我们就可以得到所有的列向量都必定不可能为0,因为如果说n个列向量中有任意一个或多个出现了为0的情况,那么对应的为0的列向量的系数就可以随便取任意数字,就不满足所有的系数都为0,也就不满足线性无关。
其次,我们知道线性无关即其齐次线性方程组只有0解,怎么推的,由线性无关定义可以知道
再由齐次线性方程组式子
两者对比,X1相当于K1,X2相当于K2以此类推,即X1到Xn都为0,即方程组只有零解
第三个,根据方程组只有0解,可知矩阵一定满秩,为什么,首先只有0解意味着X矩阵的每一个元素都有解,每一个解对应一个答案,所以必定有m个方程组,否则你不可能解出m个答案(0),也就不可能使得X矩阵都有解(0),因此矩阵化为行阶梯形最后一行一定有元素,即矩阵一定满秩